首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   6篇
测绘学   2篇
大气科学   6篇
地球物理   41篇
地质学   52篇
海洋学   15篇
天文学   18篇
自然地理   9篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   7篇
  2017年   2篇
  2016年   7篇
  2015年   7篇
  2014年   5篇
  2013年   10篇
  2012年   7篇
  2011年   13篇
  2010年   6篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   2篇
  2005年   6篇
  2004年   6篇
  2003年   2篇
  2002年   6篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有143条查询结果,搜索用时 31 毫秒
31.
32.
This study presents the first multi-proxy palaeoenvironmental and palaeoclimatic history for northern South America based on the palaeolimnological reconstruction of a pond located in a dry paramo at 3570 masl. During the Last Glacial Maximum (LGM), the study area was under glacial conditions, then during global events Heinrich Stadial 1 (HS1), Bølling–Allerød (BA), and the Younger Dryas (YD), the pond expanded, accumulation rates and proxies for erosion reached the highest values, indicative of humid conditions, with maxima in humidity during the BA and YD. Dry conditions and pond desiccation occurred in the Greenlandian–Northgrippian and by 6010 cal a bp the area was transformed into the mire of today. Comparisons with records from other sites in South America indicate that changes in humidity are most likely controlled by the Intertropical Convergence Zone, mainly during the glacial and postglacial, and by changes in the Pacific Ocean, more pronounced after the YD.  相似文献   
33.
34.
In the frame of the Starburst Model for AGN, we show that the evolution of a massive stellar cluster in a high metallicity environment can reproduce the observed equivalent widths of Ca II triplet lines in absorption in Starburst and active galactic nuclei. In the case of Starburst galaxies, this strength, together with the emission-line ratio [O II]/[O III], can be used to determine the age of the cluster. The strength of the Ca II lines is mainly governed by the age of the stellar cluster through the presence of red supergiant stars.  相似文献   
35.
More than ca 100 km3 of nearly homogeneous crystal-poor phonolite and ca 100 km3 of slightly zoned trachyte were erupted 39 ka during the Campanian Ignimbrite super eruption, the most powerful in the Neapolitan area. Partition coefficient calculations, equilibrium mineral assemblages, glass compositions and texture were used to reconstruct compositional, thermal and pressure gradients in the pre-eruptive reservoir as well as timing and mechanisms of evolution towards magma chamber overpressure and eruption. Our petrologic data indicate that a wide sill-like trachytic magma chamber was active under the Campanian Plain at 2.5 kbar before CI eruption. Thermal exchange between high liquidus (1199°C) trachytic sill and cool country rocks caused intense undercooling, driving a catastrophic and fast (102 years) in situ fractional crystallization and crustal assimilation that produced a water oversaturated phonolitic cap and an overpressure in the chamber that triggered the super eruption. This process culminated in an abrupt reservoir opening and in a fast single-step high decompression. Sanidine phenocrysts crystal size distributions reveal high differentiation rate, thus suggesting that such a sill-like magmatic system is capable of evolving in a very short time and erupting suddenly with only short-term warning.  相似文献   
36.
The crystal chemistry of red phlogopites from Mt. Vulture (Italy) ignimbrites has been studied by electron microprobe, secondary ion mass spectrometry (SIMS), single crystal structural investigation and Fourier transform infrared (FTIR) spectroscopy. The analysed phlogopite has Fe/(Fe + Mg) ∼ 0.35, TiO2 (wt%): 2.8–5.0 and H2O (wt%): 1.24–3.37. Infrared spectra revealed the presence of bands due to the NH4+ and H2O stretching and bending vibrations. The samples belong to the 1M polytype. The bimodal behaviour of several structural parameters allows red micas to be clustered into two distinct groups: K+ ↔ NH4+, H2O and M3+-vacancy substitutions dominate in the first group; M3+,4+-oxy, in the second group. It has to be pointed out that quantitative analysis of hydrogen (via SIMS) together with the characterization of the local environment of the anionic site (via FTIR) are fundamental in assessing the correct structural formula and the substitution mechanisms in micas. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
37.
38.
Two suites of regionally metamorphosed semi-pelitic schists were studied in order to investigate the paragenesis of low temperature plagioclase, from which something may be inferred as to the nature of the peristerite solvus at the temperatures and pressures of formation of these rocks: one from the Gile Mountain Formation in the Hanover and Mt. Cube quadrangles, eastern Vermont, U.S.A.; the other from the Alpine schists along the Haast River, South Westland, New Zealand. Plagioclase, muscovite, biotite, chlorite, carbonate, and garnet compositions were determined with an ARL EMX electron probe microanalyzer. The variation in plagioclase composition with increasing grade in the Vermont schists suggests that the peristerite solvus is asymmetrical with a near vertical albite-rich side and a sloping oligoclase-rich side. The top of the solvus appears to lie slightly above the temperature expressed by the almandine isograd in these schists. The compositions of the coexisting albite and oligoclase in the New Zealand rocks suggest a lower geothermal gradient than in Vermont, creating a different pattern of variation in plagioclase composition. Distribution diagrams of Mg, Ti, and AlIV for muscovite-biotite and chlorite-biotite pairs in both suites of rocks support the hypothesis that the plagioclase relations observed represent equilibrium.  相似文献   
39.
 Field, mineralogical and petrological data are presented on a newly found carbonatite occurrence associated with “kamafugite” lava at Cupaello, central Italy. This carbonatite occurrence is part of the Late Pleistocene Umbria-Latium ultra-alkaline district (ULUD) which extends southwards within the Apennines to Mount Vulture, delineating an important magmatic province along the most peripheral belt of the Tyrrhenian extensional tectonic system. This province is distinct, but probably related genetically with the more abundant and common leucite-bearing assemblages of the Roman Comagmatic Region and represents the first reported occurrence of carbonatite assemblages in the Mediterranean Basin. The Cupaello suite indicates that primary or near-primary mantle silicate melts of “kamafugitic” composition are transitional with Ca-carbonatite liquid and provides direct evidence of immiscibility of carbonatite from “kamafugite” magma. It is inferred that a primary mantle origin of Ca-carbonatites is conditional upon a potential silicate magma that may be coupled with the carbonatite, but may not have reached the surface. The data indicate a strong genetic link between ULUD Ca-carbonatites and some African analogues, supporting the view that their genesis depends on similar source and associated tectonic conditions. Received: 17 January 1995 / Accepted: 14 June 1995  相似文献   
40.
Diffusion of Zr and zircon solubility in hydrous, containing approximately 4.5 wt% H2O, metaluminous granitic melts with halogens, either 0.35 wt% Cl (LCl) or 1.2 wt% F (MRF), and in a halogen-free melt (LCO) were measured at 1.0 GPa and temperatures between 1,050 and 1,400 °C in a piston-cylinder apparatus using the zircon dissolution technique. Arrhenius equations for Zr diffusion in each hydrous melt composition are, for LCO with 4.4ǂ.4 wt% H2O: % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqWGebarcqGH9aqpcq % aIYaGmcqGGUaGlcqaI4aaocqaI4aaocqGHXcqScqaIWaamcqGGUaGl % cqaIWaamcqaIZaWmcqWG4baEcqaIXaqmcqaIWaamdaahaaWcbeqaai % abgkHiTiabiIda4aaakiGbcwgaLjabcIha4jabcchaWnaabmaabaWa % aSaaaeaacqGHsislcqaIXaqmcqaI0aancqaIWaamcqGGUaGlcqaIXa % qmcqGHXcqScqaIZaWmcqaIZaWmcqGGUaGlcqaI5aqoaeaacqWGsbGu % cqWGubavaaaacaGLOaGaayzkaaaaaa!571F! D = 2.88 ±0.03x10 - 8 exp( [( - 140.1 ±33.9)/(RT)] )D = 2.88 \pm 0.03x10^{ - 8} \exp \left( {{{ - 140.1 \pm 33.9} \over {RT}}} \right) , for LCl with 4.5ǂ.5 wt% H2O: % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqWGebarcqGH9aqpcq % aIYaGmcqGGUaGlcqaIZaWmcqaIZaWmcqGHXcqScqaIWaamcqGGUaGl % cqaIWaamcqaI1aqncqWG4baEcqaIXaqmcqaIWaamdaahaaWcbeqaai % abgkHiTiabisda0aaakiGbcwgaLjabcIha4jabcchaWnaabmaabaWa % aSaaaeaacqGHsislcqaIYaGmcqaI1aqncqaI0aancqGGUaGlcqaI4a % aocqGHXcqScqaI2aGncqaI0aancqGGUaGlcqaIXaqmaeaacqWGsbGu % cqWGubavaaaacaGLOaGaayzkaaaaaa!5719! D = 2.33 ±0.05x10 - 4 exp( [( - 254.8 ±64.1)/(RT)] )D = 2.33 \pm 0.05x10^{ - 4} \exp \left( {{{ - 254.8 \pm 64.1} \over {RT}}} \right) and for MRF with 4.9ǂ.3 wt% H2O: % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqWGebarcqGH9aqpcq % aIYaGmcqGGUaGlcqaI1aqncqaI0aancqGHXcqScqaIWaamcqGGUaGl % cqaIWaamcqaIZaWmcqWG4baEcqaIXaqmcqaIWaamdaahaaWcbeqaai % abgkHiTiabiwda1aaakiGbcwgaLjabcIha4jabcchaWnaabmaabaWa % aSaaaeaacqGHsislcqaIYaGmcqaIYaGmcqaIZaWmcqGGUaGlcqaI4a % aocqGHXcqScqaIXaqmcqaI1aqncqGGUaGlcqaI1aqnaeaacqWGsbGu % cqWGubavaaaacaGLOaGaayzkaaaaaa!5715! D = 2.54 ±0.03x10 - 5 exp( [( - 223.8 ±15.5)/(RT)] )D = 2.54 \pm 0.03x10^{ - 5} \exp \left( {{{ - 223.8 \pm 15.5} \over {RT}}} \right) . Solubilities determined by the dissolution technique were reversed for LCO +4.5ǂ.5 wt% H2O by crystallization of a Zr-enriched glass of LCO composition at 1,200 and 1,050 °C at 1.0 GPa. The solubility data were used to calculate partition coefficients of Zr between zircon and hydrous melt, which are given by the following expressions: for LCO % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacyGGSbaBcqGGUbGBcq % WGebardaqhaaWcbaGaemOwaOLaemOCaihabaGaemOEaONaemyAaKMa % emOCaiNaem4yamMaem4Ba8MaemOBa4Maei4la8IaemyBa0Maemyzau % MaemiBaWMaemiDaqhaaOGaeyypa0JaeGymaeJaeiOla4IaeGOnayJa % eG4mamZaaeWaaeaadaWcaaqaaiabigdaXiabicdaWiabicdaWiabic % daWiabicdaWaqaaiabdsfaubaaaiaawIcacaGLPaaacqGHsislcqaI % 1aqncqGGUaGlcqaI4aaocqaI3aWnaaa!5924! lnDZrzircon/melt = 1.63( [10000/(T)] ) - 5.87\ln D_{Zr}^{zircon/melt} = 1.63\left( {{{10000} \over T}} \right) - 5.87 , for LCl % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacyGGSbaBcqGGUbGBcq % WGebardaqhaaWcbaGaemOwaOLaemOCaihabaGaemOEaONaemyAaKMa % emOCaiNaem4yamMaem4Ba8MaemOBa4Maei4la8IaemyBa0Maemyzau % MaemiBaWMaemiDaqhaaOGaeyypa0JaeGymaeJaeiOla4IaeGinaqJa % eG4naCZaaeWaaeaadaWcaaqaaiabigdaXiabicdaWiabicdaWiabic % daWiabicdaWaqaaiabdsfaubaaaiaawIcacaGLPaaacqGHsislcqaI % 0aancqGGUaGlcqaI3aWncqaI1aqnaaa!5920! lnDZrzircon/melt = 1.47( [10000/(T)] ) - 4.75\ln D_{Zr}^{zircon/melt} = 1.47\left( {{{10000} \over T}} \right) - 4.75 and, for MRF by % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacyGGSbaBcqGGUbGBcq % WGebardaqhaaWcbaGaemOwaOLaemOCaihabaGaemOEaONaemyAaKMa % emOCaiNaem4yamMaem4Ba8MaemOBa4Maei4la8IaemyBa0Maemyzau % MaemiBaWMaemiDaqhaaOGaeyypa0JaeGymaeJaeiOla4IaeGinaqJa % eG4naCZaaeWaaeaadaWcaaqaaiabigdaXiabicdaWiabicdaWiabic % daWiabicdaWaqaaiabdsfaubaaaiaawIcacaGLPaaacqGHsislcqaI % 0aancqGGUaGlcqaI5aqocqaIXaqmaaa!591C! lnDZrzircon/melt = 1.47( [10000/(T)] ) - 4.91\ln D_{Zr}^{zircon/melt} = 1.47\left( {{{10000} \over T}} \right) - 4.91 . Experiments on the same compositions, but with water contents down to 0.5 wt%, demonstrated reductions in both the diffusion coefficient of Zr and zircon solubility in the melt. The addition of halogens at the concentration levels studied to metaluminous melts has a small effect on either the diffusion of Zr in the melt, or the solubility of zircon at all water concentrations and temperatures investigated. At 800 °C, the calculated diffusion coefficient of Zr is lowest in LCl, 9᎒-17 m2 s-1, and is highest in LCO, 4᎒-15 m2 s-1. Extrapolation of the halogen-free solubility data to a magmatic temperature of 800 °C yields solubilities of approximately one-third of those directly measured in similar compositions, predicted by earlier studies of zircon dissolution and based upon analyses of natural rocks. This discrepancy is attributed to the higher oxygen fugacity of the experiments of this study compared with previous studies and nature, and the effect of oxygen fugacity on the structural role of iron in the melt, which, in turn, affects zircon solubility, but does not significantly affect Zr diffusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号