全文获取类型
收费全文 | 672篇 |
免费 | 30篇 |
专业分类
测绘学 | 7篇 |
大气科学 | 44篇 |
地球物理 | 186篇 |
地质学 | 187篇 |
海洋学 | 36篇 |
天文学 | 162篇 |
自然地理 | 80篇 |
出版年
2022年 | 4篇 |
2021年 | 18篇 |
2020年 | 12篇 |
2019年 | 11篇 |
2018年 | 20篇 |
2017年 | 25篇 |
2016年 | 15篇 |
2015年 | 19篇 |
2014年 | 17篇 |
2013年 | 49篇 |
2012年 | 28篇 |
2011年 | 27篇 |
2010年 | 21篇 |
2009年 | 37篇 |
2008年 | 29篇 |
2007年 | 33篇 |
2006年 | 25篇 |
2005年 | 29篇 |
2004年 | 14篇 |
2003年 | 19篇 |
2002年 | 11篇 |
2001年 | 20篇 |
2000年 | 10篇 |
1999年 | 8篇 |
1998年 | 12篇 |
1997年 | 17篇 |
1996年 | 9篇 |
1995年 | 6篇 |
1994年 | 7篇 |
1993年 | 5篇 |
1992年 | 4篇 |
1991年 | 8篇 |
1990年 | 10篇 |
1988年 | 4篇 |
1987年 | 11篇 |
1986年 | 4篇 |
1985年 | 6篇 |
1984年 | 4篇 |
1983年 | 4篇 |
1982年 | 22篇 |
1981年 | 5篇 |
1980年 | 4篇 |
1979年 | 10篇 |
1977年 | 7篇 |
1976年 | 5篇 |
1975年 | 5篇 |
1974年 | 9篇 |
1973年 | 8篇 |
1970年 | 2篇 |
1875年 | 2篇 |
排序方式: 共有702条查询结果,搜索用时 0 毫秒
701.
A two-dimensional Galerkin finite element model for water flow in variably saturated soil is presented. A fourth-order Runge-Kutta time integration method is employed which allows use of time steps at least 2 times greater than for a traditional finite difference approximation of time derivatives. For short total simulation times computer execution costs for the Runge-Kutta method are greater than for the finite difference approximation due to the start up cost of the Runge-Kutta method, but for longer simulation times the Runge-Kutta method requires considerably less computational effort even when automatic time-step adjustment is used with the finite difference procedure. A comparison of the method of influence coefficients and 2 × 2 Gaussian integration to compute element matrices indicates that the influence coefficient method reduces total execution time to 60% of that required for numerical quadrature. Computed pressure heads using the influence coefficient method and numerical integration are found to be in close agreement with each other even under conditions of highly non-linear soil properties in a heterogeneous domain. Fluxes computed by the two methods are also generally in close agreement except under extremely non-linear conditions when some deviations were observed at short simulation times. 相似文献
702.
Abstract The uncertainty associated with a rainfall–runoff and non-point source loading (NPS) model can be attributed to both the parameterization and model structure. An interesting implication of the areal nature of NPS models is the direct relationship between model structure (i.e. sub-watershed size) and sample size for the parameterization of spatial data. The approach of this research is to find structural limitations in scale for the use of the conceptual NPS model, then examine the scales at which suitable stochastic depictions of key parameter sets can be generated. The overlapping regions are optimal (and possibly the only suitable regions) for conducting meaningful stochastic analysis with a given NPS model. Previous work has sought to find optimal scales for deterministic analysis (where, in fact, calibration can be adjusted to compensate for sub-optimal scale selection); however, analysis of stochastic suitability and uncertainty associated with both the conceptual model and the parameter set, as presented here, is novel; as is the strategy of delineating a watershed based on the uncertainty distribution. The results of this paper demonstrate a narrow range of acceptable model structure for stochastic analysis in the chosen NPS model. In the case examined, the uncertainties associated with parameterization and parameter sensitivity are shown to be outweighed in significance by those resulting from structural and conceptual decisions. Citation Parker, G. T. Rennie, C. D. & Droste, R. L. (2011) Model structure and uncertainty for stochastic non-point source modelling applications. Hydrol. Sci. J. 56(5), 870–882. 相似文献