首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   30篇
测绘学   7篇
大气科学   44篇
地球物理   186篇
地质学   187篇
海洋学   36篇
天文学   162篇
自然地理   80篇
  2022年   4篇
  2021年   18篇
  2020年   12篇
  2019年   11篇
  2018年   20篇
  2017年   25篇
  2016年   15篇
  2015年   19篇
  2014年   17篇
  2013年   49篇
  2012年   28篇
  2011年   27篇
  2010年   21篇
  2009年   37篇
  2008年   29篇
  2007年   33篇
  2006年   25篇
  2005年   29篇
  2004年   14篇
  2003年   19篇
  2002年   11篇
  2001年   20篇
  2000年   10篇
  1999年   8篇
  1998年   12篇
  1997年   17篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1991年   8篇
  1990年   10篇
  1988年   4篇
  1987年   11篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   4篇
  1982年   22篇
  1981年   5篇
  1980年   4篇
  1979年   10篇
  1977年   7篇
  1976年   5篇
  1975年   5篇
  1974年   9篇
  1973年   8篇
  1970年   2篇
  1875年   2篇
排序方式: 共有702条查询结果,搜索用时 0 毫秒
701.
A two-dimensional Galerkin finite element model for water flow in variably saturated soil is presented. A fourth-order Runge-Kutta time integration method is employed which allows use of time steps at least 2 times greater than for a traditional finite difference approximation of time derivatives. For short total simulation times computer execution costs for the Runge-Kutta method are greater than for the finite difference approximation due to the start up cost of the Runge-Kutta method, but for longer simulation times the Runge-Kutta method requires considerably less computational effort even when automatic time-step adjustment is used with the finite difference procedure. A comparison of the method of influence coefficients and 2 × 2 Gaussian integration to compute element matrices indicates that the influence coefficient method reduces total execution time to 60% of that required for numerical quadrature. Computed pressure heads using the influence coefficient method and numerical integration are found to be in close agreement with each other even under conditions of highly non-linear soil properties in a heterogeneous domain. Fluxes computed by the two methods are also generally in close agreement except under extremely non-linear conditions when some deviations were observed at short simulation times.  相似文献   
702.
Abstract

The uncertainty associated with a rainfall–runoff and non-point source loading (NPS) model can be attributed to both the parameterization and model structure. An interesting implication of the areal nature of NPS models is the direct relationship between model structure (i.e. sub-watershed size) and sample size for the parameterization of spatial data. The approach of this research is to find structural limitations in scale for the use of the conceptual NPS model, then examine the scales at which suitable stochastic depictions of key parameter sets can be generated. The overlapping regions are optimal (and possibly the only suitable regions) for conducting meaningful stochastic analysis with a given NPS model. Previous work has sought to find optimal scales for deterministic analysis (where, in fact, calibration can be adjusted to compensate for sub-optimal scale selection); however, analysis of stochastic suitability and uncertainty associated with both the conceptual model and the parameter set, as presented here, is novel; as is the strategy of delineating a watershed based on the uncertainty distribution. The results of this paper demonstrate a narrow range of acceptable model structure for stochastic analysis in the chosen NPS model. In the case examined, the uncertainties associated with parameterization and parameter sensitivity are shown to be outweighed in significance by those resulting from structural and conceptual decisions.

Citation Parker, G. T. Rennie, C. D. & Droste, R. L. (2011) Model structure and uncertainty for stochastic non-point source modelling applications. Hydrol. Sci. J. 56(5), 870–882.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号