首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   10篇
  国内免费   1篇
测绘学   2篇
大气科学   11篇
地球物理   51篇
地质学   36篇
海洋学   9篇
天文学   18篇
综合类   1篇
自然地理   19篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   11篇
  2015年   3篇
  2014年   7篇
  2013年   13篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   7篇
  2004年   8篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1969年   1篇
排序方式: 共有147条查询结果,搜索用时 62 毫秒
71.
The abundant iron sulfide mineral pyrite has been shown to catalytically produce hydrogen peroxide (H2O2) and hydroxyl radical ( . OH) in slurries of oxygenated water. Understanding the formation and fate of these reactive oxygen species is important to biological and ecological systems as exposure can lead to deleterious health effects, but also environmental engineering during the optimization of remediation approaches for possible treatment of contaminated waste streams. This study presents the use of the amino acid phenylalanine (Phe) to monitor the kinetics of pyrite-induced . OH formation through rates of hydroxylation forming three isomers of tyrosine (Tyr) - ortho-, meta-, and para-Tyr. Results indicate that about 50% of the Phe loss results in Tyr formation, and that these products further react with . OH at rates comparable to Phe. The overall loss of Phe appeared to be pseudo first-order in [Phe] as a function of time, but for the first time it is shown that initial rates were much less than first-order as a function of initial substrate concentration, [Phe]o. These results can be rationalized by considering that the effective concentration of . OH in solution is lower at a higher level of reactant and that an increasing fraction of . OH is consumed by Phe-degradation products as a function of time. A simplified first-order model was created to describe Phe loss in pyrite slurries which incorporates the [Phe]o, a first-order dependence on pyrite surface area, the assumption that all Phe degradation products compete equally for the limited supply of highly reactive . OH, and a flux that is related to the release of H2O2 from the pyrite surface (a result of the incomplete reduction of oxygen at the pyrite surface). An empirically derived rate constant, K pyr , was introduced to describe a variable . OH-reactivity for different batches of pyrite. Both the simplified first-order kinetic model, and a more detailed numerical simulation, yielded results that compare well to the observed kinetic data describing the effects of variations in concentrations of both initial Phe and pyrite. This work supports the use of Phe as a useful probe to assess the formation of . OH in the presence of pyrite, and its possible utility for similar applications with other minerals.  相似文献   
72.
The Cassini Imaging Science Subsystem (ISS) and Composite Infrared Spectrometer (CIRS) reported a North Equatorial Belt (NEB) wave in Jupiter's atmosphere from optical images [Porco, C.C., and 23 colleagues, 2003. Science 299, 1541-1547] and thermal maps [Flasar, F.M., and 39 colleagues, 2004. Nature 427, 132-135], respectively. The connection between the two waves remained uncertain because the two observations were not simultaneous. Here we report on simultaneous ISS images and CIRS thermal maps that confirm that the NEB wave shown in the ISS ultraviolet (UV1) and strong methane band (MT3) images is correlated with the thermal wave in the CIRS temperature maps, with low temperatures in the CIRS maps (upwelling) corresponding to dark regions in the UV1 images (UV-absorbing particles) and bright regions in the MT3 images (high clouds and haze). The long period of the NEB wave suggests that it is a planetary (Rossby) wave. The combined observations from the ISS and CIRS are utilized to discuss the vertical and meridional propagation of the NEB wave, which offers a possible explanation for why the NEB wave is confined to specific latitudes and altitudes. Further, the ISS UV1 images reveal a circumpolar wave centered at 48.5° S (planetocentric) and probably located in the stratosphere, as suggested by the ISS and CIRS observations. The simultaneous comparison between the ISS and CIRS also implies that the large dark oval in the polar stratosphere of Jupiter discovered in the ISS UV1 images [Porco, C.C., and 23 colleagues, 2003. Science 299, 1541-1547] is the same feature as the warm regions at high northern latitudes in the CIRS 1-mbar temperature maps [Flasar, F.M., and 39 colleagues, 2004. Nature 427, 132-135]. This comparison supports a previous suggestion that the dark oval in the ISS UV1 images is linked to auroral precipitation and heating [Porco, C.C., and 23 colleagues, 2003. Science 299, 1541-1547].  相似文献   
73.
In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, α, on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with α, and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes.The temperatures of the A and B rings are correlated with their optical depth, τ, when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest τ, these temperatures are also the same at both low and high α, suggesting that little sunlight is penetrating these regions.The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.  相似文献   
74.
The Kwakshua Watersheds Observatory (KWO) is an integrative watersheds observatory on the coastal margin of a rain-dominated bog-forest landscape in British Columbia (BC), Canada. Established in 2013, the goal of the KWO is to understand and model the flux of terrestrial materials from land to sea – the origins, pathways, processes and ecosystem consequences – in the context of long-term environmental change. The KWO consists of seven gauged watersheds and a network of observation sites spanning from land to sea and along drainage gradients within catchments. Time-series datasets include year-round measurements of weather, soil hydrology, streamflow, aquatic biogeochemistry, microbial ecology and nearshore oceanographic conditions. Sensor measurements are recorded every 5 min and water samples are collected approximately monthly. Additional observations are made during high-flow conditions. We used remote sensing to map watershed terrain, drainage networks, soils and terrestrial ecosystems. The watersheds range in size from 3.2 to 12.8 km2, with varying catchment characteristics that influence hydrological and biogeochemical responses. Despite local variation, the overall study area is a global hotspot for yields of dissolved organic carbon, dissolved organic nitrogen and dissolved iron at the coastal margin. This observatory helps fill an important gap in the global network of observatories, in terms of spatial location (central coast of BC), climate (temperate oceanic), hydrology (very high runoff, pluvial regime), geology (igneous intrusive, glacially scoured), vegetation (bog rainforest) and soils (large stores of organic carbon).  相似文献   
75.
Drought and summer drying can be important disturbance events in many small streams leading to intermittent or isolated habitats. We examined what habitats act as refuges for fishes during summer drying, hypothesizing that pools would act as refuge habitats. We predicted that during drying fish would show directional movement into pools from riffle habitats, survival rates would be greater in pools than in riffles, and fish abundance would increase in pool habitats. We examined movement, survival and abundance of three minnow species, bigeye shiner (Notropis boops), highland stoneroller (Campostoma spadiceum) and creek chub (Semotilus atromaculatus), during seasonal stream drying in an Ozark stream using a closed robust multi-strata mark-recapture sampling. Population parameters were estimated using plausible models within program MARK, where a priori models are ranked using Akaike’s Information Criterion. Creek chub showed directional movement into pools and increased survival and abundance in pools during drying. Highland stonerollers showed strong directional movement into pools and abundance increased in pools during drying, but survival rates were not significantly greater in pools than riffles. Bigeye shiners showed high movement rates during drying, but the movement was non-directional, and survival rates were greater in riffles than pools. Therefore, creek chub supported our hypothesis and pools appear to act as refuge habitats for this species, whereas highland stonerollers partly supported the hypothesis and bigeye shiners did not support the pool refuge hypothesis. Refuge habitats during drying are species dependent. An urgent need exists to further understand refuge habitats in streams given projected changes in climate and continued alteration of hydrological regimes.  相似文献   
76.
77.
We describe a method of morphometric characterisation of landform from digital elevation models (DEMs). The method is implemented first by classifying every location into morphometric classes based on the mathematical shape of a locally fitted quadratic surface and its positional relationship with the analysis window. Single‐scale fuzzy terrain indices of peakness, pitness, passness, ridgeness, and valleyness are then calculated based on the distance of the analysis location from the ideal cases. These can then be combined into multi‐scale terrain indices to summarise terrain information across different operational scales. The algorithm has four characteristics: (1) the ideal cases of different geomorphometric features are simply and clearly defined; (2) the output is spatially continuous to reflect the inherent fuzziness of geomorphometric features; (3) the output is easily combined into a multi‐scale index across a range of operational scales; and (4) the standard general morphometric parameters are quantified as the first and second order derivatives of the quadratic surface. An additional benefit of the quadratic surface is the derivation of the R 2 goodness of fit statistic, which allows an assessment of both the reliability of the results and the complexity of the terrain. An application of the method using a test DEM indicates that the single‐ and multi‐scale terrain indices perform well when characterising the different geomorphometric features.  相似文献   
78.
The relationship between climate and tree-growth for loblolly pine in north Georgia is investigated by: 1) determining during which months climate has its strongest impact on loblolly pine growth, and 2) specifically examining the relationship between loblolly pine growth and growing season precipitation. Response function analyses indicate that precipitation during the current May-August period has a positive effect on pine growth, while the previous growing season shows no significant effect on growth. Significant negative effects of temperature were found during the previous June and August, current April, and the current June-September period. A regression model predicting the May-September growing season rainfall total as a function of tree-ring indices was highly significant (r2 = 0.48). These results indicate that loblolly pine is a useful species for investigating the impact of climate and other factors on the recent decline of pine growth in the southeastern United States. [Key words: Dendroclimatology, tree rings, loblolly pine, Georgia.]  相似文献   
79.
Six surface water samples from locations along Otter Creek in Southeastern Montana and a groundwater sample from a nearby monitoring well completed in the Knobloch coal were analyzed for stable carbon isotope ratios. Along the length of its perennial reach, between the towns of Otter and Ashland, Otter Creek crosses several coal outcrops, including the Knobloch coal zone. The carbon isotope ratio of the creek becomes progressively more similar to that of the Knobloch coal aquifer groundwater in samples collected downgradient from the town of Otter. The isotope ratio of the stream changes from ?10.5 to ?8.9‰ reflecting the influence of the coal‐aquifer base flow contribution, as represented by Knobloch coal groundwater, which has a carbon isotope value of +3.9‰. The dissolved inorganic carbon concentrations of the groundwater and surface water are similar (~100 mg/L), which allowed the use of the simplified, first‐order, two‐end‐member mixing equation. Using carbon isotope ratios, calculations of the fraction of water contributed by coal aquifers indicate that approximately 11% of the surface water in Otter Creek at its mouth near Ashland was supplied by groundwater from the coal aquifers that crop out between Otter and Ashland. This study was conducted in December, when Otter Creek is at low flow. At times of higher surface flow, the contribution from groundwater base flow will be correspondingly smaller. This study illustrates that carbon isotopes can be an effective, low‐cost tool in base flow studies.  相似文献   
80.
This study compares formal Bayesian inference to the informal generalized likelihood uncertainty estimation (GLUE) approach for uncertainty-based calibration of rainfall-runoff models in a multi-criteria context. Bayesian inference is accomplished through Markov Chain Monte Carlo (MCMC) sampling based on an auto-regressive multi-criteria likelihood formulation. Non-converged MCMC sampling is also considered as an alternative method. These methods are compared along multiple comparative measures calculated over the calibration and validation periods of two case studies. Results demonstrate that there can be considerable differences in hydrograph prediction intervals generated by formal and informal strategies for uncertainty-based multi-criteria calibration. Also, the formal approach generates definitely preferable validation period results compared to GLUE (i.e., tighter prediction intervals that show higher reliability) considering identical computational budgets. Moreover, non-converged MCMC (based on the standard Gelman–Rubin metric) performance is reasonably consistent with those given by a formal and fully-converged Bayesian approach even though fully-converged results requires significantly larger number of samples (model evaluations) for the two case studies. Therefore, research to define alternative and more practical convergence criteria for MCMC applications to computationally intensive hydrologic models may be warranted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号