首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   10篇
  国内免费   1篇
测绘学   2篇
大气科学   11篇
地球物理   51篇
地质学   36篇
海洋学   9篇
天文学   18篇
综合类   1篇
自然地理   19篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   11篇
  2015年   3篇
  2014年   7篇
  2013年   13篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   7篇
  2004年   8篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1969年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
131.
A river at equilibrium is described by a statistically-stationary mean bed elevation profile that arises in response to steady supplies of relief, water and sediment. Outside of the profile shape, how is the equilibrium state of a river most reliably identified and rigorously defined? Motivated by a proposed link between equilibrium and physical processes, we use scaling theory to develop the dimensionless channel response number ξ=KUb/Up. ξ is a metric for the local disequilibrium state of gravel-bed mountain streams, which reflects a balance between the rate of topographic adjustment Ub, and the rate of bed sediment texture adjustment Up. The coefficient K can take one of two forms depending on choice of length scale for topographic adjustment. We hypothesize that equilibrium occurs where and when ξ≈O(1), and consequently, disequilibrium is the more general state captured by conditions of ξ≉O(1). The rates Ub and Up are controlled by the mechanics of sediment deposition and entrainment at the local scale of the channel width. The extent to which either process regulates disequilibrium depends on the bed strength, which is set by the time-varying grain size distribution and packing. We use flume experiments to understand ξ and find that in the limit ξ>>1, the time-varying response of an experimental channel depends sensitively on the spatially-averaged bed shear stress ratio τ/τref. When τ/τref≈1.5, Ub was the dominant control on disequilibrium. However, when τ/τref≈2.0, Up contributed more significantly to disequilibrium. These results suggest that after an upstream supply perturbation, the equilibrium timescale is governed by Up, which we show is consistent with expectations from linear damping theory. Our experimental test of ξ is promising, but inconclusive with respect to our hypothesis. This uncertainty can be readily addressed with numerical or additional physical experiments. © 2019 John Wiley & Sons, Ltd.  相似文献   
132.
Alluvial mountain streams exhibit a range of channel forms: pool–riffle, plane bed, step–pool and cascades. Previous work suggested that these forms exist within discrete, and progressively steeper slope classes. Measurements conducted at over 100 sites in west‐central and central Idaho confirm that slope steepens progressively as one moves from pool–riffle, to plane bed, to step–pool, and finally to cascades. Median slope for pool–riffle topography is 0·0060, for plane beds 0·013, for step–pools 0·044, and for cascades 0·068. There is substantial overlap in the slopes associated with these channel forms. Pool–riffle topography was found at slopes between 0·0010 and 0·015, plane beds between 0·0010 and 0·035, step–pools between 0·015 and 0·134, and cascades between 0·050 and 0·12. Step–pools are particularly striking features in headwater streams. They are characterized by alternating steep and gentle channel segments. The steep segments (step risers) are transverse accumulations of boulder and cobbles, while the gentle segments (pools) contain finer material. Step wavelength is best correlated to step height which is in turn best correlated to the median particle size found on step risers. This result differs from past studies that have reported channel slope to be the dominant control on step wavelength. The presumed geometry and Froude number associated with the features under formative conditions are consistent with the existence field for antidunes and by extension with the hypothesis that step–pools are formed by antidunes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
133.
Stratigraphic exposures in natural profiles, archaeological excavation units, backhoe trenches, and an uncased water well from the Laguna Seca Chapala basin in the Central Desert of Baja California (29°N, 115°W) record lake level and climate changes and provide a context for prehistoric occupation predating 9070 yr B.P. and extending through the Holocene. Lithofacies analysis points to the presence of a large (ca. 66 km2) lake prior to 9070 yr B.P., which desiccated by 7.45 ka yr B.P., promoting rapid dune growth. New dating and redefinition of stratigraphic units in the basin refutes earlier models of lacustrine history and prehistoric occupation including a proposed series of Pleistocene lake levels with associated cultural occupations. The geologic record from the Laguna Seca Chapala basin compares well with other paleoenvironmental records in southwestern North America, supporting interpretations of wet and cool conditions in Baja California during the late Pleistocene and early Holocene. © 2003 Wiley Periodicals, Inc.  相似文献   
134.
The Northern Hemisphere ice sheets decayed rapidly during deglacial phases of the ice-age cycle, producing meltwater fluxes that may have been of sufficient magnitude to perturb oceanic circulation. The continental record of ice-sheet history is more obscured during the growth and advance of the last great ice sheets, ca. 120,000–20,000 yr B.P., but ice cores tell of high-amplitude, millennial-scale climate fluctuations that prevailed throughout this period. These climatic excursions would have provoked significant fluctuation of ice-sheet margins and runoff variability whenever ice sheets extended to mid-latitudes, giving a complex pattern of freshwater delivery to the oceans. A model of continental surface hydrology is coupled with an ice-dynamics model simulating the last glacial cycle in North America. Meltwater discharged from ice sheets is either channeled down continental drainage pathways or stored temporarily in large systems of proglacial lakes that border the retreating ice-sheet margin. The coupled treatment provides quantitative estimates of the spatial and temporal patterns of freshwater flux to the continental margins. Results imply an intensified surface hydrological environment when ice sheets are present, despite a net decrease in precipitation during glacial periods. Diminished continental evaporation and high levels of meltwater production combine to give mid-latitude runoff values that are highly variable through the glacial cycle, but are two to three times in excess of modern river fluxes; drainage to the North Atlantic via the St. Lawrence, Hudson, and Mississippi River catchments averages 0.356 Sv for the period 60,000–10,000 yr B.P., compared to 0.122 Sv for the past 10,000 yr. High-amplitude meltwater pulses to the Gulf of Mexico, North Atlantic, and North Pacific occur throughout the glacial period, with ice-sheet geometry controlling intricate patterns of freshwater routing variability. Runoff from North America is staged in the final deglaciation, with a stepped sequence of pulses through the Mississippi, St. Lawrence, Arctic, and Hudson Strait drainages.  相似文献   
135.
The point spread function of the soft X-ray telescope (SXT) aboard the Yohkoh spacecraft is a Moffat function with elliptical characteristics. This function has two parameters, a and b, that are wavelength dependent in the X-ray region of interest. Since most SXT data analysis is performed with respect to plasma temperature rather than wavelength, it is useful to spectrally average these two parameters over wavelength with temperature as the free variable. The results of this spectral averaging are given here for users of SXT data.  相似文献   
136.
137.
Slow changes in the magnetic field are believed to originate in the core of the Earth. Interpretation of these changes requires knowledge both of the vertical component of the field and of its rate of change at the core-mantle boundary (CMB). While various spherical harmonic models show some agreement for the field at the CMB, those for secular variation (SV) do not. SV models depend heavily on annual means at relatively few and poorly distributed magnetic observatories. In this paper, the SV at the CMB is modelled by fitting 15-year differences in the annual means of the X, Y and Z components (from 1959 to 1974). The model is made unique by imposing the constraint that ?CMBB?r2dS be a minimum, using the method of Shure et al. (1982). If SV is attributed to motions of core fluid, then this model will yield, in some sense, the slowest core motions. The null space is determined by the distribution of observations, and therefore, to be consistent, only those observatories have been retained which recorded almost continuously throughout the interval 1959–1974.The method allows misfit between the model and the observations. The best value for the misfit can be derived from estimates of errors in the data, or alternatively, because larger misfit leads to smoother models (i.e., smaller ? B?r2dS), the best value can be estimated subjectively from the final appearance of the model. Both procedures have their counterparts in the conventional spherical harmonic expansion approach, when smoothing is achieved by lowering the truncation level. The new proposal made in this paper is to use objective criteria for determining the misfit, based on the assumption that diffusion is negligible, in which event all integrals B?r2dS will vanish when Si is a region on the CMB bounded by a contour of zero vertical component of field. For the 1965 definitive model which is adopted here, and for most other contemporary models, there are six such areas, giving five independent integrals (the integrals over the six regions must sum to zero if ? · B = 0). Tabulating these integrals for various choices of the misfit gives minimum values near 2 nT y?1. It is impossible to achieve this good a fit to the data using a reasonable model derived by truncating the spherical harmonic expansion. The value 2 nT y?1 corresponds to errors of ~ 20 nT in individual annual means, which is rather larger than expected from the scatter in the data.  相似文献   
138.
New bathymetric and geophysical data were collected in the region east of the island of Malaita during the SOPACMAPS II cruise of the French research vessel L'ATALANTE. This region, part of the Malaita Anticlinorium was interpreted as a piece of oceanic crust from the Ontong Java Plateau obducted over the old Solomon Islands arc during collision between the Pacific and Australian plates. It has been generally accepted that convergent motion between the Australia and Pacific plates since the Late Miocene was absorbed exclusively along the San Cristobal trench, southwest of the Solomon Islands Arc.Bathymetry, imagery, and geophysical data (magnetism, gravity, seismic) acquired during the SOPACMAPS II survey allow us to classify the successive parallel ridges mapped within the region as being recent volcanic, oceanic crust, or deformed sedimentary ridges.Seismic profiling provides evidence of successive compressive events along the Malaita margin caused by the relative motion between the Solomon Islands and the Pacific plate. The main phase of convergence probably occurred during Oligocene-early Miocene time, but some relative motion between the two domains are still being absorbed along the East Malaita boundary. The existence of active faulting in the sedimentary cover throughout the region and the present-day deformation of the outer sedimentary ridge is a good illustration of this phenomenon.  相似文献   
139.
Mid-pacific mountains revisited   总被引:1,自引:0,他引:1  
The Mid-Pacific Mountains are guyots whose volcanic pedestals have been constructed on a broad basement plateau, the flanks of which are downfaulted. Edifice construction may have been controlled by an orthogonal system of intersecting faults trending roughly ENE and NNW. Low amplitude gravity anomalies observed over the Mid-Pacific Mountains indicate complete Airy-Heiskanen isostatic compensation, crustal thickening, and eruption on thin elastic lithosphere. Tholeiites of the Mid-Pacific Mountains resemble lavas of Iceland and the Galapagos Islands. The orthogonal fault system, low gravity anomalies, and lava chemistry of the Mid-Pacific Mountains can be explained by eruption on or near a great ENE-trending rift system.  相似文献   
140.
In certain regions of the world, designing deep foundations to withstand seismic loading is a reality. Seismic loading of structures and foundations reaches its most critical state as a cyclic lateral force. The response of soils and foundations to repetitive lateral forces is highly complex, relegating most design methods to be based upon overly conservative rules-of-thumb. The primary objective of this research was to analyze the mechanics of seismic loading on pile groups in clay soils. To achieve this a model testing facility was constructed to house a fully instrumented 1×5 model pile group that was subjected to cyclic lateral loading. An empirically based method for pile group design is suggested based upon the results generated from model pile group testing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号