首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   3篇
大气科学   5篇
地球物理   42篇
地质学   6篇
海洋学   15篇
天文学   29篇
自然地理   3篇
  2021年   3篇
  2020年   2篇
  2016年   7篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2010年   1篇
  2009年   4篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2002年   4篇
  2000年   5篇
  1999年   5篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1984年   5篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
11.
12.
Ocean Dynamics - The complicated pattern of the chaotic ocean surface depends strongly on the interaction between wind and waves. An accurate representation of momentum and energy exchange at...  相似文献   
13.
The waters of Lake Nyos are impounded by a fragile natural dam composed of pyroclastic rocks ejected during the formation of the lake crater (maar). Lateral erosion of this dam has reduced its width from over 500 m to only 45 m. Published whole-rock K-Ar ages of about 100 ka on juvenile basalt from the dam suggests that erosion has been slow and that the dam poses no imminent threat. New apparent 40Ar/39Ar ages of 1.4 to 232 Ma on xenocrystic K-feldspar contained in the basalt show that the xenocrysts, whose source is the 528-Ma crystalline basement, are carriers of inherited radiogenic 40Ar and would cause the whole-rock K-Ar ages to be too old. The best estimate for the age of the maar is provided by a 14C age of 400 ± 100 yr BP on charcoal from the base of the dam. This young age indicates that the dam is eroding at a relatively rapid rate; its failure, perhaps within a few decades, would result in a major flood and imperil thousands of people living downstream in Cameroon and eastern Nigeria.  相似文献   
14.
A multilayer canopy model of a pine forest is used to investigate the sensitivity of the water balance of the wet canopy to variations in meteorological input. The multilayer model does not take into account large-scale eddies, which are now considered to be of importance to canopy transport. It does, however, provide realistic simulations of wet canopy water balance and often predicts interception loss rates higher than those predicted by a unilayer model for the same meteorological input. Stable layers both within and above the canopy are often simulated during rainfall events, and these may help to spontaneously generate large-scale eddies or waves within forest canopies. The sensitivity study for a wet canopy suggests that low vapour pressure deficits and low wind speeds are associated with unstable surface conditions, and increasing values of both variables are associated with decreasing canopy drainage values and increasing evaporative losses. Low short- or long-wave radiation inputs are associated with stable surface conditions, and increasing values of both variables are associated with decreasing canopy drainage values and increasing evaporative losses. Increasing temperature is associated with increasing surface stability and increasing canopy drainage and decreasing evaporative losses. In real situations the tendency for increasing temperature to cause surface stability and decreased evaporative loss is probably compensated by the opposite effects of increasing short- or long-wave radiation. The model simulations suggest that wet forest canopies may be better ventilated at low temperatures, if other meteorological conditions are constant.  相似文献   
15.
16.
A coordinated ground-based observational campaign using the IMAGE magnetometer network, EISCAT radars and optical instruments on Svalbard has made possible detailed studies of a travelling convection vortices (TCV) event on 6 January 1992. Combining the data from these facilities allows us to draw a very detailed picture of the features and dynamics of this TCV event. On the way from the noon to the drawn meridian, the vortices went through a remarkable development. The propagation velocity in the ionosphere increased from 2.5 to 7.4 km s−1, and the orientation of the major axes of the vortices rotated from being almost parallel to the magnetic meridian near noon to essentially perpendicular at dawn. By combining electric fields obtained by EISCAT and ionospheric currents deduced from magnetic field recordings, conductivities associated with the vortices could be estimated. Contrary to expectations we found higher conductivities below the downward field aligned current (FAC) filament than below the upward directed. Unexpected results also emerged from the optical observations. For most of the time there were no discrete aurora at 557.7 nm associated with the TCVs. Only once did a discrete form appear at the foot of the upward FAC. This aurora subsequently expanded eastward and westward leaving its centre at the same longitude while the TCV continued to travel westward. Also we try to identify the source regions of TCVs in the magnetosphere and discuss possible generation mechanisms.  相似文献   
17.
Early in 1996, the latest of the European inco-herent-scatter (EISCAT) radars came into operation on the Svalbard islands. The EISCAT Svalbard Radar (ESR) has been built in order to study the ionosphere in the northern polar cap and in particular, the dayside cusp. Conditions in the upper atmosphere in the cusp region are complex, with magnetosheath plasma cascading freely into the atmosphere along open magnetic field lines as a result of magnetic reconnection at the dayside magnetopause. A model has been developed to predict the effects of pulsed reconnection and the subsequent cusp precipitation in the ionosphere. Using this model we have successfully recreated some of the major features seen in photometer and satellite data within the cusp. In this paper, the work is extended to predict the signatures of pulsed reconnection in ESR data when the radar is pointed along the magnetic field. It is expected that enhancements in both electron concentration and electron temperature will be observed. Whether these enhancements are continuous in time or occur as a series of separate events is shown to depend critically on where the open/closed field-line boundary is with respect to the radar. This is shown to be particularly true when reconnection pulses are superposed on a steady background rate.  相似文献   
18.
19.
Many atmospheric measurement systems, such as the sounding instruments on Voyager, gather atmospheric information in the form of temperature versus pressure level. In these terms, there is considerable consistency among the mean atmospheric profiles of the outer planets Jupiter through Neptune, including Titan. On a given planet or on Titan, the range of variability of temperature versus pressure level due to seasonal, latitudinal, and diurnal variations is also not large. However, many engineering needs for atmospheric models relate not to temperature versus pressure level but atmospheric density versus geometric altitude. This need is especially true for design and analysis of aerocapture systems. Drag force available for aerocapture is directly proportional to atmospheric density. Available aerocapture “corridor width” (allowable range of atmospheric entry angle) also depends on height rate of change of atmospheric density, as characterized by density scale height. Characteristics of hydrostatics and the gas law equation mean that relatively small systematic differences in temperature versus pressure profiles can integrate at high altitudes to very large differences in density versus altitude profiles. Thus, a given periapsis density required to accomplish successful aerocapture can occur at substantially different altitudes (∼150-300 km) on the various outer planets, and significantly different density scale heights (∼20-50 km) can occur at these periapsis altitudes. This paper will illustrate these effects and discuss implications for improvements in atmospheric measurements to yield significant impact on design of aerocapture systems for future missions to Titan and the outer planets. Relatively small-scale atmospheric perturbations, such as gravity waves, tides, and other atmospheric variations can also have significant effect on design details for aerocapture guidance and control systems. This paper will discuss benefits that would result from improved understanding of Titan and outer planetary atmospheric perturbation characteristics. Details of recent engineering-level atmospheric models for Titan and Neptune will be presented, and effects of present and future levels of atmospheric uncertainty and variability characteristics will be examined.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号