首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   16篇
  国内免费   5篇
测绘学   28篇
大气科学   52篇
地球物理   113篇
地质学   240篇
海洋学   50篇
天文学   26篇
综合类   9篇
自然地理   22篇
  2021年   3篇
  2020年   7篇
  2019年   3篇
  2018年   29篇
  2017年   32篇
  2016年   24篇
  2015年   17篇
  2014年   29篇
  2013年   37篇
  2012年   36篇
  2011年   22篇
  2010年   29篇
  2009年   28篇
  2008年   20篇
  2007年   18篇
  2006年   16篇
  2005年   18篇
  2004年   20篇
  2003年   11篇
  2002年   3篇
  2001年   9篇
  2000年   6篇
  1999年   6篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1969年   3篇
  1960年   3篇
  1951年   2篇
排序方式: 共有540条查询结果,搜索用时 31 毫秒
441.
A workshop organized in French Polynesia in November 2004 allowed reviewing the current methods to model the three-dimensional hydrodynamic circulation in semi-enclosed atoll lagoons for aquaculture applications. Mollusk (e.g. pearl oyster, clam) aquaculture is a major source of income for South Pacific countries such as French Polynesia or Cook Islands. This aquaculture now requires a better understanding of circulation patterns to improve the spatial use of the lagoons, especially to define the best area to set larvae collectors. The pelagic larval duration of the relevant species (<20 days) and the size of the semi-closed lagoons (few hundreds of km2) drive the specifications of the model in terms of the spatial and temporal scale. It is considered that, in contrast with fish, mollusk larvae movements are limited and that their cycle occurs completely in the lagoon, without an oceanic stage. Atolls where aquaculture is productive are generally well-bounded, or semi-closed, without significant large and deep openings to the ocean. Nevertheless part of the lagoon circulation is driven by oceanic water inputs through the rim, ocean swells, tides and winds. Therefore, boundary conditions of the lagoon system are defined by the spatial structure of a very shallow rim (exposition and number of hoas), the deep ocean swell climate, tides and wind regimes. To obtain a realistic 3D numerical model of lagoon circulation with adequate forcing, it is thus necessary to connect in an interdisciplinary way a variety of methods (models, remote sensing and in situ data collection) to accurately represent the different components of the lagoon system and its specific boundary conditions. We review here the current methods and tools used to address these different components for a hypothetical atoll of the Tuamotu Archipelago (French Polynesia), representative of the semi-closed lagoons of the South Pacific Ocean. We hope this paper will serve as a guide for similar studies elsewhere and we provide guidelines in terms of costs for all the different stages involved.  相似文献   
442.
This paper introduces an original method for climate change detection, called temporal optimal detection method. The method consists in searching for a smooth temporal pattern in the observations. This pattern can be either the response of the climate system to a specific forcing or to a combination of forcings. Many characteristics of this new method are different from those of the classical “optimal fingerprint” method. It allows to infer the spatial distribution of the detected signal, without providing any spatial guess pattern. The spatial properties of the internal climate variability doesn’t need to be estimated either. The estimation of such quantities being very challenging at regional scale, the proposed method is particularly well-suited for such scale. The efficiency of the method is illustrated by applying it on real homogenized datasets of temperatures and precipitation over France. A multimodel detection is performed in both cases, using an ensemble of atmosphere-ocean general circulation models for estimating the temporal patterns. Regarding temperatures, new results are highlighted, especially by showing that a change is detected even after removing the uniform part of the warming. The sensitivity of the method is discussed in this case, relatively to the computation of the temporal patterns and to the choice of the model. The method also allows to detect a climate change signal in precipitation. This change impacts the spatial distribution of the precipitation more than the mean over the domain. The ability of the method to provide an estimate of the spatial distribution of the change following the prescribed temporal patterns is also illustrated.  相似文献   
443.
High frequency measurements of near-surface meteorological data acquired in north Benin during the 2006 West African monsoon seasonal cycle, in the context of the African Monsoon Multidisciplinary Analysis (AMMA) experiment, offer insight into the characteristics of surface turbulence in relation to planetary boundary-layer (PBL) processes. A wide range of conditions is encountered at the lower and upper limits of the PBL: (i) from water-stressed to well-fed vegetation, and (ii) from small to large humidity and temperature jumps at the PBL top inversion, due to the Saharan air layer overlying the monsoonal flow. As a result, buoyant convection at the surface and entrainment at the PBL top play very different roles according to the considered scalar. We show that, when the boundary-layer height reaches the shear level between the monsoonal and Harmattan flows, the temperature source and humidity sink at the boundary-layer top are sufficient to allow the entrainment to affect the entire boundary layer down to the surface. This situation occurs mainly during the drying and moistening periods of the monsoon cycle and affects the humidity statistics in particular. In this case, the humidity turbulent characteristics at the surface are no longer driven solely by buoyant convection, but also by entrainment at the boundary-layer top. Consequently, the Monin–Obukhov similarity theory appears to fail for the parameterisation of humidity-related moments.  相似文献   
444.
High‐P rocks such as eclogite and blueschist are metamorphic markers of palaeo‐subduction zones, and their formation at high‐P and low‐T (HP–LT) conditions is relatively well understood since it has been the focus of numerous petrological investigations in the past 40 years. The tectonic mechanisms controlling their exhumation back to the surface are, however, diverse, complex and still actively debated. Although the Cycladic Blueschist Unit (CBU, Greece) is among the best worldwide examples for the preservation of eclogite and blueschist, the proposed P–T evolution followed by this unit within the Hellenic subduction zone is quite different from one study to another, hindering the comprehension of exhumation processes. In this study, we present an extensive petrological data set that permits refinement of the shape of the P–T trajectory for different subunits of the CBU on Syros. High‐resolution quantitative compositional mapping has been applied to support the thermobarometric investigations, which involve semi‐empirical thermobarometry, garnet equilibrium modelling and P–T isochemical phase diagrams. The thermodynamic models highlight the powerful use of reactive bulk compositions approximated from local bulk compositions. The results are also combined with Raman spectrometry of carbonaceous material (RSCM) to retrieve the metamorphic peak temperature distribution at the scale of the island. A major result of this study is the good agreement between all the independent thermobarometric methods, permitting reconstruction of the prograde and retrograde P–T trajectories. Garnet compositional zoning was used to retrieve prograde, peak and retrograde growth stages in line with the results of the P–T isochemical phase diagrams, RSCM temperature and peak‐pressure crystallization of the garnet–omphacite–phengite assemblage. Our results are consistent with previous thermobarometric estimates from other occurrences of CBU rocks (Tinos, Andros), suggesting a multistage exhumation process with (1) early syn‐orogenic exhumation within the subduction channel, (2) isobaric heating at mid‐crustal depths (~10–12 kbar) following thermal re‐equilibration of the lithosphere from a cold syn‐orogenic regime in the subduction zone to a warmer post‐orogenic regime in the back‐arc domain and (3) exhumation and cooling related to a post‐orogenic phase of extension following slab retreat. Expanding to the general aspects of subduction zones, we suggest that such metamorphic evolution of HP–LT units should be regarded as a characteristic feature of exhumation driven by slab rollback.  相似文献   
445.
The last (decompression) stages of the metamorphic evolution can modify monazite microstructure and composition, making it difficult to link monazite dates with pressure and temperature conditions. Monazite and its breakdown products under fluid‐present conditions were studied in micaschist recovered from the cuttings of the Pontremoli1 well, Tuscany. Coronitic microstructures around monazite consist of concentric zones of apatite + Th‐silicate, allanite and epidote. The chemistry and microstructure of the monazite grains, which preserve a wide range of chemical dates ranging from Upper Carboniferous to Tertiary times, suggest that this mineral underwent a fluid‐mediated coupled dissolution–reprecipitation and crystallization processes. Consideration of the chemical zoning (major and selected trace elements) in garnet, its inclusion mineralogy (including xenotime), monazite breakdown products and phase diagram modelling allow the reaction history among accessory minerals to be linked with the reconstructed P–T evolution. The partial dissolution and replacement by rare earth element‐accessory minerals (apatite–allanite–epidote) occurred during a fluid‐present decompression at 510 ± 35 °C. These conditions represent the last stage of a metamorphic history consisting of a thermal metamorphic peak at 575 °C and 7 kbar, followed by the peak pressure stage occurring at 520 °C and 8 kbar. An anticlockwise P–T path or two clockwise P–T loops can fit the above P–T constraints. The former path may be related to a context of late Variscan strike‐slip‐dominated exhumation with minor Tertiary (Alpine‐related) reworking and fluid infiltration, while the latter requires an Oligocene–Miocene fluid‐present tectono‐metamorphic overprint on the Variscan paragenesis.  相似文献   
446.
One‐dimensional flow simulations were conducted at four locations of the shallow alluvial aquifer of the upper Rhine River (at the Erstein polder) to quantify the time‐dependent moisture distribution, the water flux and the water volume infiltrated in the unsaturated zone as a function of soil heterogeneities during a five‐day‐long flooding event. Three methods of estimating the hydraulic parameters of soil in the vadose zone were tested. They are based on the following: (1) experimental data, (2) soil particle‐size distribution and (3) pedology information on soils. Water fluxes calculated from modelling approaches 2 and 3 were compared with those of the experiment‐based values and the effect of these differences on the arrival time and velocity of water at the water table were analysed. Major differences in water fluxes were found among the methods of estimating the hydrodynamic parameters. At the Terrace location, the groundwater recharge predicted using soil data from methods 1 and 2 are approximately 4500 and 2400 mm, respectively. Flow simulations using soil data and the experiment‐based method show the highest velocities of infiltrating water at the soil surface and largest volume of groundwater infiltration but result in the lowest centres of the moisture content mass. The results obtained using soil data based on the pedological method are similar to those calculated using soil parameters based on the particle‐size distribution of extracted soil samples. Water pressure profiles calculated on Terrace and Channel location, 3 and 7 days after the inundation event agreed reasonably well with those observed when using hydrodynamic parameters from the experiment‐based method. However, the flow model using the pedology‐based parameters largely underestimates the time needed to achieve hydrostatic conditions of the soil water profile once water flooding at the soil surface stops. This can be mainly attributed to the low values of estimated van Genuchten parameter α. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
447.
448.
Rainfall over Turkey portrays highly variable character both spatially and temporally. The aim of this study is to redefine main rainfall clusters of Turkey by using k-means methodology and investigate spatial shifts in the redefined rainfall clusters in subsequent periods with respect to North Atlantic Oscillation (NAO) patterns. Initially, monthly rainfall totals are subjected to k-means clustering by taking into consideration 148 stations covering the 1977?C2006 period. Considering the maximum silhouette value and lowest negative silhouette number, six rainfall clusters are determined as optimum classifications for this climate period. The results indicate that Aegean?CMarmara and Eastern Anatolia?CCentral Anatolia geographic regions are characterized as single rainfall cluster contrary to the conventional geographical regions. The Mediterranean region is characterized with two separate sub-regions indicating highly variable rainfall distribution characters over the region. The study further adapts a similar classification for 10-year sub-periods to determine spatial shifts of the redefined rainfall clusters for the last 30?years. From one decade to another, temporally drier and wetter clusters are observed with underlying shifting causes in relation to NAO patterns. Parallel to other studies in the literature, NAO is found to be partially useful in explaining the temporally dry trends while less useful in justifying wet periods. On the other hand, coefficient of variation (COV) is introduced in order to explain the temporal shifts in the clusters. Strong relations are obtained between the regions with the higher COV numbers and highest cluster shifts, while smaller COV numbers are associated with the most stable clusters.  相似文献   
449.
Soil–water characteristic curves (SWCCs) and soil permeability functions (SPFs) for a silty sand were validated based on soil suction and soil water content measurements in calibration box and constant-head seepage tests. Transient seepage analyses using finite element method (FEM) were performed to examine the accuracy of the derived SWCCs and SPFs, with a special focus on the wetting front propagation. Results show that the proposed new integrated system consisting of experimental and analytical techniques works well, in the sense that the soil moisture responses at specific depths of soil mimic those measured in constant-head seepage tests.  相似文献   
450.
State parameter defined using void ratio, e, and the steady-state line has been shown to be effective in predicting the undrained behaviour of sand. However, steady-state line for sand with fines is dependent on fines content. To overcome this problem, the concept of equivalent granular void ratio, e*, has been well investigated. However, the conversion from e to e* has been essentially a back-analysis process. A methodology for converting e to e* without the need of a back-analysis process was first presented. The concept of equivalent granular state parameter, ψ*, defined in terms of e*, and equivalent granular steady-state line was then developed. An extensive experimental study was conducted to investigate whether ψ* can capture the effects of fines content, and thus can be used to correlate undrained behaviour of sand–fines mixtures without the need of separately considering the effects of fines content. This study suggested that the effective stress path and deviatoric stress–strain responses in undrained shearing can be correlated with the ψ* value at the start of undrained shearing irrespective of fines content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号