首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   17篇
  国内免费   4篇
测绘学   2篇
大气科学   9篇
地球物理   38篇
地质学   62篇
海洋学   24篇
天文学   33篇
自然地理   16篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   12篇
  2015年   11篇
  2014年   6篇
  2013年   17篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   10篇
  2008年   8篇
  2007年   11篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1960年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
181.
Gelatinous zooplankton abundance and species composition were investigated at 3‐h intervals for a 48‐h period at a fringing reef in Malaysia. A total of 20 gelatinous zooplankton species were observed; the community was dominated by the calycophoran siphonophore Diphyes chamissonis (79.9%), followed by the trachymedusdae Aglaura hemistoma (5.6%) and Liriope tetraphylla (4.8%). The gelatinous zooplankton were not collected in the water column during most of the daytime hours (1200, 1500 and 1800 h) but were common during the night. However, an abrupt peak in abundance was found at 0900 h on the second day. The times of appearance at night were different depending on the species, and the number of species was also different depending on the hour of sampling. Sampling at 3‐h intervals over a 48‐h period revealed that the temporal variation (or sampling availability) was large in this study. Careful consideration should be given to the sampling variability in handling the gelatinous zooplankton samples in coral reef areas.  相似文献   
182.
Abstract– Recent spacecraft missions to comets have reopened a long‐standing debate about the histories and origins of cometary materials. Comets contain mixtures of anhydrous minerals and ices seemingly unaffected by planetary processes, yet there are indications of a hydrated silicate component. We have performed aqueous alteration experiments on anhydrous interplanetary dust particles (IDPs) that likely derived from comets. Hydrated silicates rapidly formed from submicrometer amorphous silicates within the IDPs at room temperature in mildly alkaline solution. Hydrated silicates may thus form in the near‐surface regions of comets if liquid water is ever present. Our findings provide insight into origins of cometary IDPs containing both anhydrous and hydrated minerals and help reconcile the seemingly inconsistent observations of hydrated silicates from the Stardust and Deep Impact missions.  相似文献   
183.
Zoned crystals can be important recorders of magmatic processes in space and time. However, in most situations, the temporal dimension is difficult to quantify. Here, we have employed secondary ion mass spectrometry depth profiling to excavate parallel pits into non-polished crystal faces of zircon to obtain ~5 μm resolution U–Th disequilibrium ages (one pit) that can be correlated with trace element zoning at sub-μm resolution derived from a second pit. Data from 17 crystals representing each of the four rhyolite eruptions of Tarawera volcano, an intra-caldera edifice within the Okataina Volcanic Centre, reveal diverse zircon growth conditions over time. Most crystals display rimward depletions in Zr/Hf and Ti, broadly consistent with cooling and crystallization. However, a significant fraction of crystals lacks these patterns and displays rimward trace element variations consistent with isothermal or prograde crystallization. Oscillatory zonation patterns in Y, Th, and U are superimposed on the Zr/Hf and Ti trends. Despite the limited number of crystals analyzed in this way, the striking lack of ubiquitous trace element zoning patterns in crystals from the same hand sample implies that fractional crystallization upon cooling was punctuated by magma recharge and crystal mixing affecting different parts of the magma reservoir. By combining data from all crystals, a systematic change to more heterogeneous trace element abundances is revealed by zircon crystal domains <45 ka following the Rotoiti caldera-forming eruption. This contrasts with the more uniform conditions of zircon crystallization lasting >100 ka prior to caldera formation and is best explained by the post-caldera system consisting of small, isolated melt pockets that evolved independently. An important conclusion is that the zircon ‘cargo’ in volcanic rocks reflects thermally and compositionally divergent processes that act near simultaneously in a magma storage region and not exclusively the conditions in the eruptible magma.  相似文献   
184.
The Almahata Sitta (AhS) meteorite consists of disaggregated clasts from the impact of the polymict asteroid 2008 TC3, including ureilitic (70%–80%) and diverse non-ureilitic materials. We determined the 40Ar/39Ar release patterns for 16 AhS samples (3–1500 μg) taken from three chondritic clasts, AhS 100 (L4), AhS 25 (H5), and MS-D (EL6), as well as a clast of ureilitic trachyandesite MS-MU-011, also known as ALM-A, which is probably a sample of the crust of the ureilite parent body (UPB). Based on our analyses, best estimates of the 40Ar/39Ar ages (Ma) of the chondritic clasts are 4535 ± 10 (L4), 4537–4555 with a younger age preferred (H5), and 4513 ± 17 (EL6). The ages for the L4 and the H5 clasts are older than the most published 40Ar/39Ar ages for L4 and H5 meteorites, respectively. The age for the EL6 clast is typical of older EL6 chondrites. These ages indicate times of argon closure ranging up to 50 Ma after the main constituents of the host breccia, that is, the ureilitic components of AhS, reached the >800°C blocking temperatures of pyroxene and olivine thermometers. We suggest that these ages record the times at which the clasts cooled to the Ar closure temperatures on their respective parent bodies. This interpretation is consistent with the recent proposal that the majority of xenolithic materials in polymict ureilites were implanted into regolith 40–60 Ma after calcium–aluminum-rich inclusion and is consistent with the interpretation that 2008 TC3 was a polymict ureilite. With allowance for its 10-Ma uncertainty, the 4549-Ma 40Ar/39Ar age of ALM-A is consistent with closure within a few Ma of the time recorded by its Pb/Pb age either on the UPB or as part of a rapidly cooling fragment. Plots of age versus cumulative 39Ar release for 10 of 15 samples with ≥5 heating steps indicate minor losses of 40Ar over the last 4.5 Ga. The other five such samples lost some 40Ar at estimated times no earlier than 3800–4500 Ma bp . Clustering of ages in the low-temperature data for these five samples suggests that an impact caused localized heating of the AhS progenitor ~2.7 Ga ago. In agreement with the published work, 10 estimates of cosmic-ray exposure ages based on 38Ar concentrations average 17 ± 5 Ma but may include some early irradiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号