首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2176篇
  免费   146篇
  国内免费   168篇
测绘学   123篇
大气科学   152篇
地球物理   526篇
地质学   812篇
海洋学   291篇
天文学   304篇
综合类   62篇
自然地理   220篇
  2023年   20篇
  2022年   55篇
  2021年   77篇
  2020年   68篇
  2019年   74篇
  2018年   96篇
  2017年   79篇
  2016年   118篇
  2015年   84篇
  2014年   103篇
  2013年   107篇
  2012年   117篇
  2011年   127篇
  2010年   141篇
  2009年   111篇
  2008年   102篇
  2007年   69篇
  2006年   90篇
  2005年   40篇
  2004年   77篇
  2003年   63篇
  2002年   73篇
  2001年   43篇
  2000年   46篇
  1999年   39篇
  1998年   37篇
  1997年   28篇
  1996年   28篇
  1995年   29篇
  1994年   25篇
  1993年   20篇
  1992年   18篇
  1991年   10篇
  1990年   14篇
  1989年   14篇
  1988年   7篇
  1987年   27篇
  1986年   10篇
  1985年   21篇
  1984年   20篇
  1983年   20篇
  1982年   25篇
  1981年   14篇
  1980年   21篇
  1979年   9篇
  1978年   10篇
  1976年   13篇
  1974年   5篇
  1973年   8篇
  1972年   6篇
排序方式: 共有2490条查询结果,搜索用时 437 毫秒
301.
The development of the Alpine mountain belt has been governed by the convergence of the African and European plates since the Late Cretaceous. During the Cenozoic, this orogeny was accompanied with two major kinds of intraplate deformation in the NW-European foreland: (1) the European Cenozoic Rift System (ECRIS), a left-lateral transtensional wrench zone striking NNE-SSW between the western Mediterranean Sea and the Bohemian Massif; (2) long-wavelength lithospheric folds striking NE and located between the Alpine front and the North Sea. The present-day geometry of the European crust comprises the signatures of these two events superimposed on all preceding ones. In order to better define the processes and causes of each event, we identify and separate their respective geometrical signatures on depth maps of the pre-Mesozoic basement and of the Moho. We derive the respective timing of rifting and folding from sedimentary accumulation curves computed for selected locations of the Upper Rhine Graben. From this geometrical and chronological separation, we infer that the ECRIS developed mostly from 37 to 17 Ma, in response to north-directed impingement of Adria into the European plate. Lithospheric folds developed between 17 and 0 Ma, after the azimuth of relative displacement between Adria and Europe turned counter-clockwise to NW–SE. The geometry of these folds (wavelength = 270 km; amplitude = 1,500 m) is consistent with the geometry, as predicted by analogue and numerical models, of buckle folds produced by horizontal shortening of the whole lithosphere. The development of the folds resulted in ca. 1,000 m of rock uplift along the hinge lines of the anticlines (Burgundy–Swabian Jura and Normandy–Vogelsberg) and ca. 500 m of rock subsidence along the hinge line of the intervening syncline (Sologne–Franconian Basin). The grabens of the ECRIS were tilted by the development of the folds, and their rift-related sedimentary infill was reduced on anticlines, while sedimentary accumulation was enhanced in synclines. We interpret the occurrence of Miocene volcanic activity and of topographic highs, and the basement and Moho configurations in the Vosges–Black Forest area and in the Rhenish Massif as interference patterns between linear lithospheric anticlines and linear grabens, rather than as signatures of asthenospheric plumes.
O. BourgeoisEmail:
  相似文献   
302.
Glacial geomorphologic features composed of (or cut into) Llanquihue drift delineate former Andean piedmont glaciers in the region of the southern Chilean Lake District, Seno Reloncav', Golfo de Ancud, and northern Golfo Corcovado during the last glaciation. These landforms include extensive moraine belts, main and subsidiary outwash plains, kame terraces, and meltwater spillways. Numerous radiocarbon dates document Andean ice advances into the moraine belts during the last glacial maximum (LGM) at 29,363–29,385 14C yr BP , 26,797 14C yr BP , 22,295–22,570 14C yr BP , and 14,805–14,869 14C yr BP . Advances may also have culminated at close to 21,000 14C yr BP , shortly before 17,800 14C yr BP , and shortly before 15,730 14C yr BP . The maximum at 22,295–22,567 14C yr BP was probably the most extensive of the LGM in the northern part of the field area, whereas that at 14,805–14,869 14C yr BP was the most extensive in the southern part. Snowline depression during these maxima was about 1000 m. Andean piedmont glaciers did not advance into the outer Llanquihue moraine belts during the portion of middle Llanquihue time between 29,385 14C yr BP and more than 39,660 14C yr BP . In the southern part of the field area, the Golfo de Ancud lobe, as well as the Golfo Corcovado lobe, achieved a maximum at the outermost Llanquihue moraine prior to 49,892 14C yr BP . Pollen analysis of the Taiquemmire, which is located on this moraine, suggests that the old Llanquihue advance probably corresponds to the time of marine isotope stage 4. The implication is that the Andean snowline was then depressed as much as during the LGM. A Llanquihue-age glacier expansion into the outer moraine belts also occurred more than about 40,000 14C yr BP for the Lago Llanquihue piedmont glacier.  相似文献   
303.
Subantarctic Parkland and Subantarctic–North Patagonian Evergreen Forest, embracing >40,000 14 C years of middle and late Llanquihue glaciation, are reconstructed from pollen contained in multiple interdrift deposits and cores of lake sediments. The subantarctic plant communities at low elevations have since been replaced by temperate Valdivian Evergreen Forest. Data in support of the vegetation reconstruction derive from close-interval sampling (>1400 pollen analysed stratigraphic levels) and high-resolution chronology (>200 AMS and conventional radiocarbon-dated horizons). Pollen sequences are from 15 sites, eight of which are exposures and seven mires, located in relation to lobes of piedmont glaciers that occupied Lago Llanquihue, Seno Reloncav', Golfo de Ancud, and the east-central sector of Isla Grande de Chiloí at the northern limit of the Golfo Corcovado lobe. Recurring episodes of grass maxima representing Subantarctic Parkland, when grass and scrub became widespread among patches of southern beech (Nothofagus), bear a relationship to glacial advances. The implication of the maxima, prominent with advances at 22,400 and 14,800 14C yr BP during late Llanquihue glaciation in marine oxygen-isotope Stage 2, is of successive intervals of cold climate with summer temperatures estimated at 6–8°C below the modern mean. The earliest recorded maximum at >50,000 14C yr BP is possibly during late Stage 4. At the time of middle Llanquihue glaciation in Stage 3, cool, humid interstades on Isla Grande de Chiloé with Subantarctic Evergreen Forest, which under progressive cooling after 47,000 14C yr BP was increasingly replaced by parkland. During stepwise deglaciation, when transitional beech woodland communities supplanting parkland became diversified by formation of thermophilous North Patagonian Evergreen Forest, warming in the order of 5–6°C was abrupt after 14,000 14C yr BP . Closed-canopy North Patagonian Evergreen Forest was established by 12,500 14C yr BP . Later, after c. 12,000 until 10,000 14C yr BP , depending on location, forest at low elevations became modified by expansion of a cold-tolerant element indicative of ≥2–3°C cooler climate. This stepwise climatic sequence is seen at all late-glacial sites. Cool, humid interstadial conditions, punctuated by cold stadial climate, are characteristic of the last ≥40,000 14C years of the Pleistocene at midlatitude in the Southern Hemisphere. Pollen sequences from southern South America and terrestrial–marine records from the New Zealand–Tasmania sector express a broad measure of synchrony of vegetational/climatic change for marine oxygen-isotope Stages 2–3. The data, combined with the timing of glacial maxima in the Southern Andes, Southern Alps of New Zealand, and in the Northern Hemisphere, are indicative of synchronous, millennial-scale, midlatitude climatic changes in the polar hemispheres.  相似文献   
304.
Interhemispheric Linkage of Paleoclimate During the Last Glaciation   总被引:4,自引:0,他引:4  
Combined glacial geologic and palynologic data from the southern Lake District, Seno Reloncaví, and Isla Grande de Chiloé in middle latitudes (40°35’–42°25’S) of the Southern Hemisphere Andes suggest (1) that full-glacial or near-full-glacial climate conditions persisted from about 29,400 to 14,550 14C yr BP in late Llanquihue time, (2) that within this late Llanquihue interval mean summer temperature was depressed 6°–8°C compared to modern values during major glacier advances into the outer moraine belt at 29,400, 26,760, 22,295–22,570, and 14,550–14,805 14C yr BP , (3) that summer temperature depression was as great during early Llanquihue as during late Llanquihue time, (4) that climate deteriorated from warmer conditions during the early part to colder conditions during the later part of middle Llanquihue time, (5) that superimposed on long-term climate deterioration are Gramineae peaks on Isla Grande de Chiloé that represent cooling at 44,520–47,110 14C yr BP (T-11), 32,105–35,764 14C yr BP (T-9), 24,895–26,019 14C yr BP (T-7), 21,430–22,774 14C yr BP (T-5), and 13,040–15,200 14C yr BP (T-3), (6) that the initial phase of the glacial/interglacial transition of the last termination involved at least two major steps, one beginning at 14,600 14C yr BP and another at 12,700–13,000 14 C yr BP , and (7) that a late-glacial climate reversal of ≥2–3° C set in close to 12,200 14C yr BP , after an interval of near-interglacial warmth, and continued into Younger Dryas time. The late-glacial climate signal from the southern Chilean Lake District ties into that from proglacial Lago Mascardi in the nearby Argentine Andes, which shows rapid ice recession peaking at 12,400 14C yr BP , followed by a reversal of trend that culminated in Younger-Dryas-age glacier readvance at 11,400–10,200 14C yr BP . Many full- and late-glacial climate shifts in the southern Lake District match those from New Zealand at nearly the same Southern Hemisphere middle latitudes. At the last glacial maximum (LGM), snowline lowering relative to present-day values was nearly the same in the Southern Alps (875 m) and the Chilean Andes (1000 m). Particularly noteworthy are the new Younger-Dryas-age exposure dates of the Lake Misery moraines in Arthur's Pass in the Southern Alps. Moreover, pollen records from the Waikato lowlands on North Island show that a major vegetation shift at close to 14,700 14C yr BP marked the beginning of the last glacial/interglacial transition (Newnham et al. 1989). The synchronous and nearly uniform lowering of snowlines in Southern Hemisphere middle-latitude mountains compared with Northern Hemisphere values suggests global cooling of about the same magnitude in both hemispheres at the LGM. When compared with paleoclimate records from the North Atlantic region, the middle-latitude Southern Hemisphere terrestrial data imply interhemispheric symmetry of the structure and timing of the last glacial/interglacial transition. In both regions atmospheric warming pulses are implicated near the beginning of Oldest Dryas time (~14,600 14C yr BP) and near the Oldest Dryas/Bölling transition (~12,700–13,000 14 C yr BP ). The second of these warming pulses was coincident with resumption of North Atlantic thermohaline circulation similar to that of the modern mode, with strong formation of Lower North Atlantic Deep Water in the Nordic Seas. In both regions, the maximum Bölling-age warmth was achieved at 12,200–12,500 14 C yr BP , and was followed by a reversal in climate trend. In the North Atlantic region, and possibly in middle latitudes of the Southern Hemisphere, this reversal culminated in a Younger-Dryas-age cold pulse. Although changes in ocean circulation can redistribute heat between the hemispheres, they cannot alone account either for the synchronous planetary cooling of the LGM or for the synchronous interhemispheric warming steps of the abrupt glacial-to-interglacial transition. Instead, the dominant interhemispheric climate linkage must feature a global atmospheric signal. The most likely source of this signal is a change in the greenhouse content of the atmosphere. We speculate that the Oldest Dryas warming pulse originated from an increase in atmospheric water-vapor production by half-precession forcing in the tropics. The major thermohaline switch near the Oldest Dryas/Bölling transition then couldhave triggered another increase in tropical water-vapor production to near-interglacial values.  相似文献   
305.
This paper discusses predicted evolution patterns of present-day changes of ice thickness, surface elevation, and bedrock elevation over the Greenland and Antarctic continents. These were obtained from calculations with dynamic 3-D ice sheet models which were coupled to a visco-elastic solid Earth model. The experiments were initialized over the last two glacial cycles and subsequently averaged over the last 200 years to obtain the current evolution. The calculations indicate that the Antarctic Ice Sheet is still adjusting to the last glacial-interglacial transition yielding a decreasing ice volume and a rising bedrock elevation of the order of several centimetres per year. The Greenland Ice Sheet was found to be close to a stationary state with a mean thickness change of only a few millimetres per year, but the calculations revealed large spatial differences. Predicted patterns over Greenland are characterized by a small thickening over the ice sheet interior and a general thinning of the ablation area. In Antarctica, almost all of the predicted changes are concentrated in the West Antarctic Ice Sheet, which is still retreating at both the Weddell and Ross Sea margins. Over most of both ice sheets, the model indicates that the surface elevation trend is dominated by ice thickness changes rather than by bedrock elevation changes.  相似文献   
306.
南极海冰面积变化特性及其与赤道太平洋海表面温度的联系陈锦年,乐肯堂,于康玲,张彦臣(中国科学院海洋研究所,青岛266071)(青岛海洋大学,青岛266003)关键词南极海冰面积,赤道太平洋海表面温度,厄尔尼诺1引言80年代以前,人们对南极实地考察、资...  相似文献   
307.
用定量遥感方法监测UNDP试区小流域水土流失研究   总被引:15,自引:1,他引:14       下载免费PDF全文
简要介绍了水土流失定量遥感方法的组成和基本原理,重点叙述了它在小流域治理试区的应用作业和应用结果,并讨论了它的适应性、准确性、实用性和应用前景等。该法的监测模型可与美国近年刊出的RUSLE相媲美,且其因子算式算法系由我国实测资料所建,故更适合我国水土流失实际的应用效果,尤其适用于遥感和GIS数据的微机处理。其应用结果,不仅有比常规调查法和定性遥感法更准确实用的流失总量、各级面积的统计数据和流失现状图,而且还有流失治理规划的防治强度预报图。在UNDP试区应用表明,该法所建立的系统,也可对小流域(大于7km2)每年实施监测,以获水土流失变化动态的准确信息。  相似文献   
308.
Measurements of water pressure beneath Trapridge Glacier, Yukon Territory, Canada show that the basal water system is highly heterogeneous. Three types of behaviour were recorded: pressure records which are strongly correlated, records which are strongly anticorrelated, and records which alternate between strong correlation and strong anticorrelation. We take the pressure in bore-holes that are connected to the evacuation route for basal water as the forcing, and the other pressures as the response to this forcing. Previous work (Murray and Clarke 1995) has shown that these relationships can be modelled using low-order nonlinear differential equations optimized by inversion. However, despite optimizing the model parameters we cannot be sure that the final model forms are themselves optimal. Computational intelligence techniques provide alternative methods for fitting models and are robust to missing or noisy data, applicable to non-smooth models, and attempt to derive optimal model forms as well as optimal model parameters. Four computational intelligence techniques have been used and the results compared with the more conventional mathematical model. These methods were genetic programming, artificial neural networks, fuzzy logic and self-organizing maps. We compare each technique and offer an evaluation of their suitability for modelling the pressure data. The evaluation criteria are threefold: (1) goodness of fit and an ability to predict subsequent data under different surface weather conditions; (2) interpretability, and the extent and significance of any new insights offered into the physics of the glacier; (3) computation time. The results suggest that the suitability of the computational intelligence techniques to model these data increases with the complexity of the system to be modelled.  相似文献   
309.
论中国湖泊渔业发展趋势   总被引:1,自引:1,他引:0  
由封闭到开放、从无序到有序演进, 是中国湖泊渔业发展的客观规律。目前中国湖泊渔业已迈过广封闭式的原始渔业, 半封闭式的传统渔业, 向开放式的耗散结构渔业前进.中国湖泊渔业巧妙利用多维空间进行立体开发的多种开放经笄模式, 如根据水层深浅开展立体利用, 根据地形特点进行不同形式的围栏养殖, 根据而积大小分别采取保护、增殖、养殆措施, 这些都取得r初步成功。现代开放式湖泊渔业继续向纵深发展, 呈现向耗散结构渔业逼近的趋势。  相似文献   
310.
Source rock lithology and immediate modifying processes, such as chemical weathering and mechanical erosion, are primary controls on fluvial sediment supply. Sand composition and Chemical Index of Alteration (CIA) of parent rocks, soil and fluvial sand of the Savuto River watershed, Calabria (Italy), were used to evaluate the modifications of source rocks through different sections of the basin, characterized by different geomorphic processes, in a sub‐humid Mediterranean climate. The headwaters, with gentle topography, produce a coarse‐grained sediment load derived from deeply weathered gneiss, having sand of quartzofeldspathic composition, compositionally very different from in situ degraded bedrock. Maximum estimated CIA values suggest that source rock has been affected significantly by weathering, and it testifies to a climatic threshold on the destruction of the bedrock. The mid‐course has steeper slopes and a deeply incised valley; bedrock consists of mica‐schist and phyllite with a very thin regolith, which provides large cobble to very coarse sand sediments to the main channel. Slope instability, with an areal incidence of over 40 per cent, largely supplies detritus to the main channel. Sand‐sized detritus of soil and fluvial sand is lithic. Estimated CIA value testifies to a significant weathering of the bedrock too, even if in this part of the drainage basin steeper slopes allow erosion to exceed chemical weathering. The lower course has a braided pattern and sediment load is coarse to medium–fine grained. The river cuts across Palaeozoic crystalline rocks and Miocene siliciclastic deposits. Sand‐sized detritus, contributed from these rocks and homogenized by transport processes, has been found in the quartzolithic distal samples. Field and laboratory evidence indicates that landscape development was the result of extensive weathering during the last postglacial temperature maximum in the headwaters, and of mass‐failure and fluvial erosional processes in the mid‐ and low course. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号