首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66855篇
  免费   859篇
  国内免费   373篇
测绘学   1638篇
大气科学   5344篇
地球物理   13757篇
地质学   21511篇
海洋学   5729篇
天文学   15274篇
综合类   142篇
自然地理   4692篇
  2020年   518篇
  2019年   548篇
  2018年   935篇
  2017年   922篇
  2016年   1377篇
  2015年   1016篇
  2014年   1419篇
  2013年   3242篇
  2012年   1489篇
  2011年   2277篇
  2010年   1945篇
  2009年   2917篇
  2008年   2657篇
  2007年   2390篇
  2006年   2455篇
  2005年   2131篇
  2004年   2234篇
  2003年   2059篇
  2002年   1963篇
  2001年   1774篇
  2000年   1746篇
  1999年   1504篇
  1998年   1490篇
  1997年   1480篇
  1996年   1272篇
  1995年   1208篇
  1994年   1090篇
  1993年   994篇
  1992年   943篇
  1991年   799篇
  1990年   1009篇
  1989年   848篇
  1988年   752篇
  1987年   927篇
  1986年   816篇
  1985年   1019篇
  1984年   1182篇
  1983年   1123篇
  1982年   1017篇
  1981年   976篇
  1980年   834篇
  1979年   815篇
  1978年   867篇
  1977年   788篇
  1976年   749篇
  1975年   695篇
  1974年   703篇
  1973年   708篇
  1972年   440篇
  1971年   384篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
    
Geoforensic trace evidence studies can be crucial for law enforcement and civil/criminal prosecution and defence, to test potential links between suspect(s), crime scenes or forensic object(s). In addition, trace geological evidence can be used to identify forensic sites of interest such as clandestine graves of murder victims. However, geoforensic trace evidence also has applications in a range of other investigations. This article briefly details the current geoscientific methods used to assist in such investigations and uses recent case studies to illustrate their use.  相似文献   
82.
    
The stratigraphic integrity of archaeological deposits in the seasonally wet tropics can be disrupted by termite activity and other processes. Significant questions have been raised about the surprisingly old age estimates for artefacts recovered from two sites in northern Australia: Nauwalabila and Madjedbebe. If accurate, a 65,000‐year date for the latter would represent a 30% increase in the currently accepted length of human occupation of the continent. The oldest estimate for Nauwalabila falls just short of that. These dates would have important implications for human dispersal across Eurasia in the Late Pleistocene. No other data from Australia support them. Smith et al. (2020) claim to refute the notion that termite disturbance accounts for these anomalies. Here we show that the criteria on which the assertion is based are invalid. Radiocarbon data from both sites, not cited by Smith et al. (2020), are consistent with the termite‐disturbance hypothesis. Luminescence data claimed to offer strong support for the early Madjedbebe estimate are also consistent with termite disruption. We conclude that the early dates for human presence at Madjedbebe and Nauwalabila must be rejected along with any chronometric inference about human behaviour to the degree it relies on them.  相似文献   
83.
    
A protohistoric (c.10th–5th c. BC) briquetage site at Puntone (Tuscany, Italy) was studied to unravel the salt production processes and materials involved. Geophysical surveys were used to identify kilns, pits, and dumps. One of these pits and a dump were excavated, followed by detailed chemical and physical analyses of the materials encountered. The pit had been used for holding brine, obtained by leaching of lagoonal sediment over a sieve, that afterwards was discarded to form large dumps. Phases distinguished indicate that the pit filled with fine sediment and was regularly “cleaned.” The presence of ferroan‐magnesian calcite in the pit fill testifies to the prolonged presence of anoxic brine. The production processes could be reconstructed in detail by confronting the analytical results with known changes in composition of a brine upon evaporation. These pertain in particular to the accumulation of “bitterns” and increased B (boron) concentrations in a residual brine. Both could be traced in the materials studied, and were found to be far more indicative than the ubiquitously studied concentrations of Cl and Na.  相似文献   
84.
    

In this work, uniaxial fatigue tests combined with post-test X-ray computed tomography (CT) scanning were conducted on marble samples with different interbed orientations, in order to reveal the anisotropic damage evolution characteristics during rock failure. The dynamic elastic modulus, damping ratio, fatigue deformation, damage evolution, accumulative damage modeling and crack pattern were systematically analyzed. The testing results indicate that the interbed structure in marble affects the damage evolution and the associated dynamic mechanical behaviors. The damage curve in “S” style indicates three-stage trend, namely, initial damage stage, steady damage stage and the accelerated damage stage. The damage index during cyclic deformation for marble presents obvious discrepancy. In addition, a fatigue damage prediction models was employed numerically as double-term power equations based on the experimental data. It is found that the selected damage model is suitable in modeling the rapid damage growth in the early and final stage of rock fatigue lifetime. Moreover, post-test CT scanning further reveals the anisotropic damage characteristics of marble, the crack pattern in the fractured sample is controlled by the interbed structure. What is more, the most striking founding is that the fracture degree is in consistent with the damage accumulation within the steady damage stage. Through a series of damage mechanical behavior analysis, the internal mechanism of the effect of interbed orientation on damage evolution of marble is firstly documented.

  相似文献   
85.
    
Saline alkaline lakes that precipitate sodium carbonate evaporites are most common in volcanic terrains in semi‐arid environments. Processes that lead to trona precipitation are poorly understood compared to those in sulphate‐dominated and chloride‐dominated lake brines. Nasikie Engida (Little Magadi) in the southern Kenya Rift shows the initial stages of soda evaporite formation. This small shallow (<2 m deep; 7 km long) lake is recharged by alkaline hot springs and seasonal runoff but unlike neighbouring Lake Magadi is perennial. This study aims to understand modern sedimentary and geochemical processes in Nasikie Engida and to assess the importance of geothermal fluids in evaporite formation. Perennial hot‐spring inflow waters along the northern shoreline evaporate and become saturated with respect to nahcolite and trona, which precipitate in the southern part of the lake, up to 6 km from the hot springs. Nahcolite (NaHCO3) forms bladed crystals that nucleate on the lake floor. Trona (Na2CO3·NaHCO3·2H2O) precipitates from more concentrated brines as rafts and as bottom‐nucleated shrubs of acicular crystals that coalesce laterally to form bedded trona. Many processes modify the fluid composition as it evolves. Silica is removed as gels and by early diagenetic reactions and diatoms. Sulphate is depleted by bacterial reduction. Potassium and chloride, of moderate concentration, remain conservative in the brine. Clastic sedimentation is relatively minor because of the predominant hydrothermal inflow. Nahcolite precipitates when and where pCO2 is high, notably near sublacustrine spring discharge. Results from Nasikie Engida show that hot spring discharge has maintained the lake for at least 2 kyr, and that the evaporite formation is strongly influenced by local discharge of carbon dioxide. Brine evolution and evaporite deposition at Nasikie Engida help to explain conditions under which ancient sodium carbonate evaporites formed, including those in other East African rift basins, the Eocene Green River Formation (western USA), and elsewhere.  相似文献   
86.
    
A variety of proxies have been developed to reconstruct paleo-CO2 from fossil leaves. These proxies rely on some combination of stomatal morphology, leaf δ13 C, and leaf gas exchange. A common conceptual framework for evaluating these proxies is lacking, which has hampered efforts for inter-comparison. Here we develop such a framework, based on the underlying physics and biochemistry. From this conceptual framework, we find that the more extensively parameterised proxies, such as the optimisation model, are likely to be the most robust. The simpler proxies, such as the stomatal ratio model, tend to under-predict CO2, especially in warm (>15°C ) and moist (>50% humidity) environments. This identification of a structural under-prediction may help to explain the common observation that the simpler proxies often produce estimates of paleo-CO2 that are lower than those from the more complex proxies and other, non-leaf-based CO2 proxies. The use of extensively parameterised models is not always possible, depending on the preservation state of the fossils and the state of knowledge about the fossil's nearest living relative. With this caveat in mind, our analysis highlights the value of using the most complex leaf-based model as possible.  相似文献   
87.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   
88.
    
The Mau Forest Complex is Kenya's largest fragment of Afromontane forest, providing critical ecosystem services, and has been subject to intense land use changes since colonial times. It forms the upper catchment of rivers that drain into major drainage networks, thus supporting the livelihoods of millions of Kenyans and providing important wildlife areas. We present the results of a sedimentological and palynological analysis of a Late Pleistocene–Holocene sediment record of Afromontane forest change from Nyabuiyabui wetland in the Eastern Mau Forest, a highland region that has received limited geological characterization and palaeoecological study. Sedimentology, pollen, charcoal, X-ray fluorescence and radiocarbon data record environmental and ecosystem change over the last ~16 000 cal a bp. The pollen record suggests Afromontane forests characterized the end of the Late Pleistocene to the Holocene with dominant taxa changing from Apodytes, Celtis, Dracaena, Hagenia and Podocarpus to Cordia, Croton, Ficus, Juniperus and Olea. The Late Holocene is characterized by a more open Afromontane forest with increased grass and herbaceous cover. Continuous Poaceae, Cyperaceae and Juncaceae vegetation currently cover the wetland and the water level has been decreasing over the recent past. Intensive agroforestry since the 1920s has reduced Afromontane forest cover as introduced taxa have increased (Pinus, Cupressus and Eucalyptus).  相似文献   
89.
    
Much is known about how climate change impacts ecosystem richness and turnover, but we have less understanding of its influence on ecosystem structures. Here, we use ecological metrics (beta diversity, compositional disorder and network skewness) to quantify the community structural responses of temperature-sensitive chironomids (Diptera: Chironomidae) during the Late Glacial (14 700–11 700 cal a bp ) and Holocene (11 700 cal a bp to present). Analyses demonstrate high turnover (beta diversity) of chironomid composition across both epochs; however, structural metrics stayed relatively intact. Compositional disorder and skewness show greatest structural change in the Younger Dryas, following the rapid, high-magnitude climate change at the Bølling–Allerød to Younger Dryas transition. There were fewer climate-related structural changes across the early to mid–late Holocene, where climate change was more gradual and lower in magnitude. The reduced impact on structural metrics could be due to greater functional resilience provided by the wider chironomid community, or to the replacement of same functional-type taxa in the network structure. These results provide insight into how future rapid climate change may alter chironomid communities and could suggest that while turnover may remain high under a rapidly warming climate, community structural dynamics retain some resilience.  相似文献   
90.
    
Across the UK, sandy beaches and dunes protect coastal infrastructure from waves and extreme water levels during large-scale storms, while providing important habitats and recreational opportunities. Understanding their long-term evolution is vital in managing their condition in a changing climate. Recently, ground-penetrating radar (GPR) methods have grown in popularity in geomorphological applications, yielding centimetre-scale resolution images of near-surface stratigraphy and structure, thus allowing landscape evolution to be reconstructed. Additionally, abrupt changes in palaeo-environments can be visualized in three dimensions. Although often complemented by core data, GPR allows interpretations to be extended into areas with minimal ground-truth control. Nonetheless, GPR data interpretation can be non-intuitive and ambiguous, and radargrams may not initially resemble the expected subsurface geometry. Interpretation can be made yet more onerous when handling the large 3D data volumes that are facilitated with modern GPR technology. Here we describe the development of novel semi-automated GPR feature-extraction tools, based on ‘edge detection’ and ‘thresholding’ methods, which detect regions of increased GPR reflectivity which can be applied to aid in the reconstruction of a range Quaternary landscapes. Since reflectivity can be related to lithological and/or pore fluid changes, the 3D architecture of the palaeo-landscape can be reconstructed from the features extracted from a geophysical dataset. We present 500 MHz GPR data collected over a buried Holocene coastal dune system in North Wales, UK, now reclaimed for use as an airfield. Core data from the site, reaching a maximum depth 2 m, suggest rapid vertical changes from sand to silty-organic units, and GPR profiles suggest similar lateral complexity. By applying thresholding methods to GPR depth slices, these lateral complexities are effectively and automatically mapped. Furthermore, automatic extraction of the local reflection power yields a strong correlation with the depth variation of organic content, suggesting it is a cause of reflectivity contrast. GPR-interpolated analyses away from core control thus offer a powerful proxy for parameters derived from invasive core logging. The GPR data collected at Llanbedr airfield highlight a complex dune system to a depth of 2.8 m, probably deposited in several phases over ~700 years, similar to elsewhere in North Wales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号