Regarded as an effective method for treating the global warming problem, carbon emissions abatement (CEA) allocation has become a hot research topic and has drawn great attention recently. However, the traditional CEA allocation methods generally set efficient targets for the decision-making units (DMUs) using the farthest targets, which neglects the DMUs’ unwillingness to maximize (minimize) some of their inputs (outputs). In addition, the total CEA level is usually subjectively determined without any consideration of the current carbon emission situations of the DMUs. To surmount these deficiencies, we incorporate data envelopment analysis and its closest target technique into the CEA allocation problem. Firstly, a two-stage approach is proposed for setting the optimal total CEA level for the DMUs. Then, another two-stage approach is given for allocating the identified optimal total CEA among the DMUs. Our approach provides more flexibility when setting new input and output targets for the DMUs in CEA allocation. Finally, the proposed approaches are applied for CEA target setting and allocation for 20 Asia-Pacific Economic Cooperation economies.
The hydrocarbon potential of the Hangjinqi area in the northern Ordos Basin is not well known, compared to the other areas of the basin, despite its substantial petroleum system.Restoration of a depth-converted seismic profile across the Hangjinqi Fault Zone(HFZ) in the eastern Hangjinqi area shows one compression that created anticlinal structures in the Late Triassic, and two extensions in ~Middle Jurassic and Late Early Cretaceous, which were interrupted by inversions in the Late Jurassic–Early Early Cretaceous and Late Cretaceous, respectively.Hydrocarbon generation at the well locations in the Central Ordos Basin(COB) began in the Late Triassic.Basin modeling of Well Zhao-4 suggests that hydrocarbon generation from the Late Carboniferous–Early Permian coal measures of the northern Shanbei Slope peaked in the Early Cretaceous, predating the inversion in the Late Cretaceous.Most source rocks in the Shanbei Slope passed the main gas-migration phase except for the Hangjinqi area source rocks(Well Jin-48).Hydrocarbons generated from the COB are likely to have migrated northward toward the anticlinal structures and traps along the HFZ because the basin-fill strata are dipping south.Faulting that continued during the extensional phase(Late Early Cretaceous) of the Hangjinqi area probably acted as conduits for the migration of hydrocarbons.Thus, the anticlinal structures and associated traps to the north of the HFZ might have trapped hydrocarbons that were charged from the Late Carboniferous–Early Permian coal measures in the COB since the Middle Jurassic. 相似文献