首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   32篇
测绘学   8篇
大气科学   33篇
地球物理   159篇
地质学   212篇
海洋学   67篇
天文学   203篇
综合类   4篇
自然地理   82篇
  2021年   9篇
  2020年   11篇
  2019年   8篇
  2018年   11篇
  2017年   13篇
  2016年   27篇
  2015年   23篇
  2014年   12篇
  2013年   35篇
  2012年   29篇
  2011年   19篇
  2010年   28篇
  2009年   32篇
  2008年   21篇
  2007年   26篇
  2006年   24篇
  2005年   28篇
  2004年   42篇
  2003年   22篇
  2002年   29篇
  2001年   22篇
  2000年   18篇
  1999年   10篇
  1998年   16篇
  1997年   13篇
  1996年   10篇
  1995年   16篇
  1994年   9篇
  1993年   6篇
  1992年   11篇
  1991年   7篇
  1990年   10篇
  1989年   7篇
  1987年   5篇
  1985年   8篇
  1984年   11篇
  1983年   9篇
  1982年   9篇
  1981年   11篇
  1980年   11篇
  1979年   13篇
  1978年   13篇
  1977年   7篇
  1975年   7篇
  1974年   8篇
  1973年   6篇
  1972年   6篇
  1971年   4篇
  1968年   6篇
  1966年   3篇
排序方式: 共有768条查询结果,搜索用时 25 毫秒
141.
Lewis  D.J.  Simnett  G.M. 《Solar physics》2000,191(1):185-200
We have developed a non-subjective technique for recording the occurrences of coronal mass ejection (CME) in data recorded by the Large Angle Spectrometric Coronagraph experiment (LASCO) aboard the Solar and Heliospheric Observatory spacecraft (SOHO). We have found evidence for, and quantified, an asymmetry in the apparent longitudes at which mass ejections occurred during the first year of LASCO synoptic observations and coinciding with the 1996–1997 solar minimum. Throughout this period the solar surface could loosely be characterized as having both an active and a quiet hemisphere and the observed mass ejection asymmetry is seen to relate closely with the longitudes of most persistent disc activity. However, our best estimate for the centroid of the CME distribution is 45 deg to the west of the brightest regions visible in Fe 195 Å emission on the disc and in an area of reduced coronal emission. This corresponds to the location of a trans-equatorial extension of the northern coronal hole which persisted to some degree throughout the year and was directly associated with the most active region on the disc. We suggest that this indicates magnetic reconnection, which is necessary at the boundaries of coronal holes to maintain their quasi-rigid rotation above the differentially rotating photosphere, could play an important role in triggering the destabilization of nearby structures and result in the observed prevalence of mass ejections. We estimate that the events included in the study could contribute around 8% to the total solar mass loss through the solar wind (which is around 1014 kg day–1) and find a scale of asymmetry indicating that close to 70% of this mass is ejected from within a single hemisphere.  相似文献   
142.
Considering heterogeneity in porous media pore size and connectivity is essential to predicting reactive solute transport across interfaces. However, exchange with less‐mobile porosity is rarely considered in surface water/groundwater recharge studies. Previous research indicates that a combination of pore‐fluid sampling and geoelectrical measurements can be used to quantify less‐mobile porosity exchange dynamics using the time‐varying relation between fluid and bulk electrical conductivity. For this study, we use macro‐scale (10 s of cm) advection–dispersion solute transport models linked with electrical conduction in COMSOL Multiphysics to explore less‐mobile porosity dynamics in two different types of observed sediment water interface porous media. Modeled sediment textures contrast from strongly layered streambed deposits to poorly sorted lakebed sands and cobbles. During simulated ionic tracer perturbations, a lag between fluid and bulk electrical conductivity, and the resultant hysteresis, is observed for all simulations indicating differential loading of pore spaces with tracer. Less‐mobile exchange parameters are determined graphically from these tracer time series data without the need for inverse numerical model simulation. In both sediment types, effective less‐mobile porosity exchange parameters are variable in response to changes in flow direction and fluid flux. These observed flow‐dependent effects directly impact local less‐mobile residence times and associated contact time for biogeochemical reaction. The simulations indicate that for the sediment textures explored here, less‐mobile porosity exchange is dominated by variable rates of advection through the domain, rather than diffusion of solute, for typical low‐to‐moderate rate (approximately 3–40 cm/day) hyporheic fluid fluxes. Overall, our model‐based results show that less‐mobile porosity may be expected in a range of natural hyporheic sediments and that changes in flowpath orientation and magnitude will impact less‐mobile exchange parameters. These temporal dynamics can be assessed with the geoelectrical experimental tracer method applied at laboratory and field scales.  相似文献   
143.
H.M. Böttger  S.R. Lewis  F. Forget 《Icarus》2005,177(1):174-189
This paper describes General Circulation Model (GCM) simulations of the martian water cycle focusing on the effects of an adsorbing regolith. We describe the 10-layer regolith model used in this study which has been adapted from the 1-D model developed by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. Even with a 30-min timestep and taking into account the effect of surface water ice, our fully implicit scheme compares well with the results obtained by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. This means, however, that the regolith is not able to reproduce the diurnal variations in column water vapour abundance of up to a factor of 2-3 as seen in some observations, with only about 10% of the atmospheric water vapour column exchanging with the subsurface on a daily basis. In 3-D simulations we find that the regolith adsorbs water preferentially in high latitudes. This is especially true in the northern hemisphere, where perennial subsurface water ice builds up poleward of 60° N at depths which are comparable to the Odyssey observations. Much less ice forms in the southern high latitudes, which suggests that the water ice currently present in the martian subsurface is not stable under present conditions and is slowly subliming and being deposited in the northern hemisphere. When initialising the model with an Odyssey-like subsurface water ice distribution the model is capable of forcing the simulated water cycle from an arbitrary state close to the Mars Global Surveyor Thermal Emission Spectrometer observations. Without the actions of the adsorbing regolith the equilibrated water cycle is found to be a factor of 2-4 too wet. The process by which this occurs is by adsorption of water during northern hemisphere summer in northern mid and high latitudes where it remains locked in until northern spring when the seasonal CO2 ice cap retreats. At this time the water diffuses out of the regolith in response to increased temperature and is returned to the residual water ice cap by eddie transport.  相似文献   
144.
145.
146.
Abstract— Using the isotopic compositions derived in Huss and Lewis, 1994a (Paper I), abundances of the P3, HL, and P6 noble-gas components were determined for 15 diamond separates from primitive chondrites of 8 chondrite classes. Within a meteorite class, the relative abundances of these components correlate with the petrologic subtype of the host meteorite, indicating that metamorphism is primarily responsible for the variations. Relative abundances of P3, HL, and P6 among diamond samples can be understood in terms of thermal processing of a single mixture of diamonds like those now found in CI and CM2 chondrites. With relatively gentle heating, primitive diamonds first lose their low-temperature P3 gases and a “labile” fraction of the HL component. Mass loss associated with release of these components produces an increase in the HL and P6 content of the remaining diamond relative to unprocessed diamond. Higher temperatures initiate destruction of the main HL carrier, while the HL content of the surviving diamonds remains essentially constant. At the same time, the P6 carrier begins to preferentially lose light noble gases. Meteorites that have experienced metamorphic temperatures ?650 °C have lost essentially all of their presolar diamond through chemical reactions with surrounding minerals. The P3 abundance seems to be a function only of the maximum temperature experienced by the diamonds and thus is independent of the nature of the surrounding environment. If all classes inherited the same mixture of primitive diamonds, then P3 abundances would tie together the metamorphic scales in different meteorite classes. However, if the P3 abundance indicates a higher temperature than do other thermometers applicable to the host meteorite, then the P3 abundance may contain information about heating prior to accretion. Diamonds in the least metamorphosed EH, CV, and CO chondrites seem to carry a record of pre-accretionary thermal processing.  相似文献   
147.
We compare deep Magellan spectroscopy of 26 groups at  0.3 ≤ z ≤ 0.55  , selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O  ii ]λ3727 emission (≥5 Å) increases strongly with redshift, from ∼29 per cent in 2dFGRS to ∼58 per cent in CNOC2, for all galaxies brighter than  ∼ M *+ 1.75  . This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from ∼53 to ∼75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation ( P trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers  ( P trunc≳ 0.3 Gyr−1)  . However, without assuming significant density evolution, P trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts   z ≳ 0.45  .  相似文献   
148.
A major challenge for mineral explorers is to efficiently detect mineralisation beneath the weathered cover that extends across the landscape. Determination of the elemental composition of plants (biogeochemical exploration) can aid in the detection of buried ore deposits due to their root penetration through the weathered cover. At the coyote prospect in Western Australia a range of plant species were sampled traversing a buried Au orebody. Here it is shown that the soft spinifex (Triodia pungens) accumulated important pathfinder elements related to the mineralisation, which produced a multi-element surficial expression of the underlying ore deposit. Spinifex grasses are one of the most widespread grasses over the Australian continent and have vertical root systems that can extend for many 10s of metres through sedimentary cover and interact with buried mineral deposits and alteration zones in the underlying substrate. Spinifex biogeochemistry therefore has potential to be a low cost, low environmental impact, sampling medium for mineral exploration programs across large parts of arid Australia. The examination of similar grasses from other semi-arid and arid regions from around the world therefore also warrants further investigation.  相似文献   
149.
This study concerns the laboratory testing of core samples from massive sedimentary rocks from an oil and gas field. The depth of extraction of the samples analysed varies between 1000 and 5000 metres. In all, 65 tests were performed, most of which included systematic measurement of acoustic activity during loading. The aim of the testing was to determine which types of fracture could occur in the rock matrix under field-stress conditions by examining in particular the relationship between confining pressure and the transition from brittle to ductile behaviour. The results of the laboratory tests are used to predict the occurrence of seismic activity resulting from the depletion of the gas reservoir which has been monitored during the last twenty years.  相似文献   
150.
This study attempts to determine the relation between source parameters and mechanical properties of the rock matrix in which the microseismic events occur. For this purpose, accurate geological, mechanical and seismological data were acquired on a gas field experiencing induced seismicity due to its reservoir pressure drop. More than 30 deep boreholes (depth greater than 4 km) are concentrated in a 10×10×5 km volume, providing core samples for both geological and mechanical assessment. In this study, we focus on induced seismic events recorded by the local seismic network, over a three-year-long period. Characteristics of the seismic sources were obtained using spectral analysis and a dynamic model of failure. Results point out correlation between physical parameters of the seismic sources and the geomechanical properties of the rocks involved. Maximal static stress drops are found to be associated with the mechanical strength of the geological strata where the rupture occurs. The fracture size, using a circular model of failure, is also found to be dependent on the geomechanical setting. It is found that the size of the seismic fractures is dependent on the layer thickness and the prefracturation of the medium, both factors influencing the extension of preexisting discontinuities. The parameters of the seismic sources also show important changes when the gas reservoir is reached. The reservoir unit experienced a 45 MPa pore fluid pressure drop over a period of 20 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号