首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   32篇
测绘学   8篇
大气科学   33篇
地球物理   159篇
地质学   212篇
海洋学   67篇
天文学   203篇
综合类   4篇
自然地理   82篇
  2021年   9篇
  2020年   11篇
  2019年   8篇
  2018年   11篇
  2017年   13篇
  2016年   27篇
  2015年   23篇
  2014年   12篇
  2013年   35篇
  2012年   29篇
  2011年   19篇
  2010年   28篇
  2009年   32篇
  2008年   21篇
  2007年   26篇
  2006年   24篇
  2005年   28篇
  2004年   42篇
  2003年   22篇
  2002年   29篇
  2001年   22篇
  2000年   18篇
  1999年   10篇
  1998年   16篇
  1997年   13篇
  1996年   10篇
  1995年   16篇
  1994年   9篇
  1993年   6篇
  1992年   11篇
  1991年   7篇
  1990年   10篇
  1989年   7篇
  1987年   5篇
  1985年   8篇
  1984年   11篇
  1983年   9篇
  1982年   9篇
  1981年   11篇
  1980年   11篇
  1979年   13篇
  1978年   13篇
  1977年   7篇
  1975年   7篇
  1974年   8篇
  1973年   6篇
  1972年   6篇
  1971年   4篇
  1968年   6篇
  1966年   3篇
排序方式: 共有768条查询结果,搜索用时 953 毫秒
131.
132.
Late Quaternary slip across the Cañada David detachment has produced an extensive array of Quaternary scarps cutting alluvial-fans along nearly the entire length (~ 60 km) of the range-bounding detachment. Eight regional alluvial-fan surfaces (Q1 [youngest] to Q8 [oldest]) are defined and mapped along the entire Sierra el Mayor range-front. Terrestrial cosmogenic nuclide 10Be concentrations from individual boulders on alluvial-fan surfaces Q4 and Q7 yield surface exposure ages of 15.5 ± 2.2 ka and 204 ± 11 ka, respectively. Formation of the fans is probably tectonic, but their evolution is strongly moderated by climate, with surfaces developing as the hydrological conditions have changed in response to climate change on Milankovitch timescales. Systematic mapping reveals that the fault scarp array along active range-bounding faults in Sierras Cucapa and El Mayor can be divided into individual rupture zones, based on cross-cutting relationships with alluvial-fans. Quantitative morphological ages of the Laguna Salada fault-scarps, derived from linear diffusive degradation modeling, are consistent with the age of the scarps based on cross-cutting relationships. The weighted means of the maximum mass diffusivity constant for all scarps with offsets < 4 m is 0.051 and 0.066 m2/ka for the infinite and finite-slope solutions of the diffusion equation, respectively. This estimate is approximately an order of magnitude smaller than the lowest diffusivity constants documented in other regions and it probably reflects the extreme aridity and other microclimatic conditions that characterize the eastern margin of Laguna Salada.  相似文献   
133.
134.
Sahelian Africa makes up the native range of pearl millet and the impact of domestication on the genetic diversity of wild, intermediate, and cultivated subspecies is still poorly understood. Wild populations are known to spontaneously germinate throughout this range and hybridize with cultivated material. To investigate genetic structure, populations of pearl millet from several African countries were analyzed at the morphological and molecular levels for diversity. Results demonstrate how little differentiation there is between subspecies and populations. It appears that pearl millet throughout the Sahel remains a metapopulation with large hybrid zones. These results have important implications for conservation of pearl millet.  相似文献   
135.
136.
The Chaman left‐lateral strike‐slip fault bounds the rigid Indian plate boundary at the western end of the Himalayan‐Tibetan orogen and is marked by contrasting topographic relief. Deformed landforms along the fault provide an excellent record for understanding this actively evolving intra‐continental strike‐slip fault. The geomorphic response of an active transpessional stretch of the Chaman fault was studied using digital elevation model (DEM) data integrated with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared/Short Wave Infrared (VNIR/SWIR) and images from GeoEye‐1. Geologic and geomorphic mapping helped in reconstructing the Late Quaternary landscape history of this transpessional strand of the Chaman strike‐slip fault and the associated Spinatizha thrust fault in western Pakistan. Topographic analysis of a part of the transpression (the thrust bounded Roghani ridge) revealed northward growth of the Spinatizha fault with the presence of three water gaps and two corresponding wind gaps. Geomorphic indices including stream length‐gradient index, mountain front sinuosity, valley floor width to valley height ratios, and entrenchment of recent alluvial fan deposits were used to define the lateral growth and direction of propagation of the Spinatizha fault. Left‐lateral displacement along Chaman fault and uplift along the Spinatizha fault was defined using topographic analysis of the Roghani ridge and geomorphic mapping of an impressive alluvial fan, the Bostankaul fan. The landforms and structures record slip partitioning along the Indian plate boundary, and account for the convergence resulting from the difference in the Chaman fault azimuth and orientation of the velocity vector of the Indian plate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
137.
Potential erosion and sedimentation for three small stream basins near Dodoma, Tan-zania are simulated using SOILCART, a computer program recently developed to assist in the investi-gation of soil erosion problems. Using only widely available generalized data, the predicted values of soil erosion and sedimentation derived from SOILCART compare favorably to measured values which required a 2-year field investigation. Potential areas of high erosion are identified that could be amelio-rated with proper management. The potential use of SOILCART in preliminary evaluation of erosion and sedimentation problems promises useful results, especially in areas where small dams are proposed.  相似文献   
138.
139.
The interannual variability of near-coastal eastern North Pacific tropical cyclones is described using a data set of cyclone tracks constructed from U.S. and Mexican oceanic and atmospheric reports for the period 1951-2006. Near-coastal cyclone counts are enumerated monthly, allowing us to distinguish interannual variability during different phases of the May-November tropical cyclone season. In these data more tropical cyclones affect the Pacific coast in May-July, the early months of the tropical cyclone season, during La Niña years, when equatorial Pacific sea surface temperatures are anomalously cool, than during El Niño years. The difference in early season cyclone counts between La Niña and El Niño years was particularly pronounced during the mid-twentieth century epoch when cool equatorial temperatures were enhanced as described by an index of the Pacific Decadal Oscillation. Composite maps from years with high and low near-coastal cyclone counts show that the atmospheric circulation anomalies associated with cool sea surface temperatures in the eastern equatorial Pacific are consistent with preferential steering of tropical cyclones northeastward toward the west coast of Mexico.  相似文献   
140.
J.L. Hough in 1962 recognized an erosional unconformity in the upper section of early postglacial lake sediments in northwestern Lake Huron. Low-level Lake Stanley was defined at 70 m below present water surface on the basis of this observation, and was inferred to follow the Main Algonquin highstand and Post-Algonquin lake phases about 10 14C ka, a seminal contribution to the understanding of Great Lakes history. Lake Stanley was thought to have overflowed from the Huron basin through the Georgian Bay basin and the glacio-isostatically depressed North Bay outlet to Ottawa and St. Lawrence rivers. For this overflow to have occurred, Hough assumed that post-Algonquin glacial rebound was delayed until after the Lake Stanley phase. A re-examination of sediment stratigraphy in northwestern Lake Huron using seismic reflection and new core data corroborates the sedimentological evidence of Hough’s Stanley unconformity, but not its inferred chronology or the level of the associated lowstand. Erosion of previously deposited sediment, causing the gap in the sediment sequence down to 70 m present depth, is attributed to wave erosion in the shoreface of the Lake Stanley lowstand. Allowing for non-deposition of muddy sediment in the upper 20 m approximately of water depth as occurs in the present Great Lakes, the inferred water level of the Stanley lowstand is repositioned at 50 m below present in northwestern Lake Huron. The age of this lowstand is about 7.9 ± 0.314C ka, determined from the inferred 14C age of the unconformity by radiocarbon-dated geomagnetic secular variation in six new cores. This relatively young age shows that the lowstand defined by Hough’s Stanley unconformity is the late Lake Stanley phase of the northern Huron basin, youngest of three lowstands following the Algonquin lake phases. Reconstruction of uplift histories for lake level and outlets shows that late Lake Stanley was about 25–30 m below the North Bay outlet, and about 10 m below the sill of the Huron basin. The late Stanley lowstand was hydrologically closed, consistent with independent evidence for dry regional climate at this time. A similar analysis of the Chippewa unconformity shows that the Lake Michigan basin also hosted a hydrologically closed lowstand, late Lake Chippewa. This phase of closed lowstands is new to the geological history of the Great Lakes. This is the ninth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M Lewis were guest editors of this special issue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号