A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow
and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed
in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport
were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon
of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference
flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground
heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately
spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined
effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion. 相似文献
We report on the results of a time-series photometric survey of NGC 2362, carried out using the CTIO 4-m Blanco telescope and Mosaic-II detector as part of the Monitor project. Rotation periods were derived for 271 candidate cluster members over the mass range 0.1 ≲ M /M⊙≲ 1.2 . The rotation period distributions show a clear mass-dependent morphology, qualitatively similar to that in NGC 2264, as would be expected from the age of this cluster. Using models of angular momentum evolution, we show that angular momentum losses over the ∼1–5 Myr age range appear to be needed in order to reproduce the evolution of the slowest rotators in the sample from the ONC to NGC 2362, as found by many previous studies. By incorporating Spitzer IRAC mid-infrared (mid-IR) measurements, we found that three to four objects showing mid-IR excesses indicative of the presence of circumstellar discs were all slow rotators, as would be expected in the disc regulation paradigm for early pre-main-sequence angular momentum evolution, but this result is not statistically significant at present, given the extremely limited sample size. 相似文献
During the early stages of galaxy evolution, the metallicity is generally low and nearby metal-poor star-forming galaxies may provide templates for primordial star formation. In particular, the dust content of such objects is of great importance, because early molecular formation can take place on grains. To gain insight into primeval galaxies at high redshift, we examine the dust content of the nearby extremely low-metallicity galaxy SBS 0335–052 which hosts a very young starburst (≲107 yr). In young galaxies, the dust formation rate in Type II supernovae governs the amount of dust, and by incorporating recent results on dust production in Type II supernovae we model the evolution of dust content. If the star-forming region is compact (≲100 pc), as suggested by observations of SBS 0335–052 , our models consistently explain the quantity of dust, far-infrared luminosity, and dust temperature in this low-metallicity object. We also discuss the H2 abundance. The compactness of the region is important to H2 formation, because the optical depth of dust for UV photons becomes large and H2 dissociation is suppressed. We finally focus on implications for damped Ly α systems. 相似文献
Summary Severe convection in the Sydney basin regularly produces destructive winds, heavy rain or flash flooding, and damage from
large hail. Such convective activity is a major forecasting challenge for the Sydney basin, especially during the October
to April warm season. There presently is a need to provide timely, accurate and reliable numerical guidance to supplement
the current probabilistic convective outlooks, issued by the operational forecasters. Initial work has been carried out that
examines two cases of severe convection in the Sydney basin. The performance of a very high resolution (2 km) numerical weather
prediction (NWP) model is assessed in terms of how well it performed in providing guidance on heavy rainfall and hail, as
well as other key mesoscale phenomena such as low level convergence lines. The model results discriminated well between severe
convection that actually did occur in the first case (1 December, 2000) and the failure of severe convection to develop in
the second case (8 December, 2000). The operational forecasters predicted severe convection to occur in both cases. It is
now planned to take the next step of augmenting the quasi-subjective approach of the operational forecasters with the NWP
guidance to provide an enhanced capacity to forecast severe convection in the Sydney basin.
Received October 20, 2001 Revised December 28, 2001 相似文献
Atmospheric water vapor abundances in Mars’ north polar region (NPR, from 60° to 90°N) are mapped as function of latitude and longitude for spring and summer seasons, and their spatial, seasonal, and interannual variability is discussed. Water vapor data are from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Viking Orbiter (VO) Mars Atmospheric Water Detector (MAWD). The data cover three complete northern spring-summer seasons in 1977-1978, 2000-2001 and 2002-2003, and shorter periods of spring-summer seasons during 1975, 1999 and 2004. Long term interannual variability in the averaged NPR abundances may exist, with Viking MAWD observations showing twice as much water vapor during summer as the MGS TES observations more than 10 martian years (MY) later. While the averaged abundances are very similar in TES observations for the same season in different years, the spatial distributions in the early summer season do vary significantly year over year. Spatial and temporal variabilities increase between Ls ∼ 80-140°, which may be related to vapor sublimation from the North Polar Residual Cap (NPRC), or to changes in circulation. Spatial variability is observed on scales of ∼100 km and temporal variability is observed on scales of <10 sols during summer. During late spring the TES water vapor spatial distribution is seen to correlate with the low topography/low albedo region of northern Acidalia Planitia (270-360°E), and with the dust spatial distribution across the NPR during late spring-early summer. Non-uniform vertical distribution of water vapor, a regolith source or atmospheric circulation ‘pooling’ of water vapor from the NPRC into the topographic depression may be behind the correlation with low topography/low albedo. Sublimation winds carrying water vapor off the NPRC and lifting surface dust in the areas surrounding the NPRC may explain the correlation between the water vapor and dust spatial distributions. Correlation between water vapor and dust in MAWD data are only observed over low topography/low albedo area. Maximum water vapor abundances are observed at Ls = 105-115° and outside of the NPRC at 75-80°N; the TES data, however, do not extend over the NPRC and thus, this conclusion may be biased. Some water vapor appears to be released in plumes or ‘outbursts’ in the MAWD and TES datasets during late spring and early summer. We propose that the sublimation rate of ice varies across the NPRC with varying surface winds, giving rise to the observed ‘outbursts’ at some seasons. 相似文献
Theoretical and Applied Climatology - Accurate assessment of the rainfall characteristics of a river basin is essential for its proper management. In this study, we examine long-term trends in... 相似文献
The second and third flybys of Mercury by the MESSENGER spacecraft occurred, respectively, on 6 October 2008 and on 29 September 2009. In order to provide contextual information about the solar wind properties and the interplanetary magnetic field (IMF) near the planet at those times, we have used an empirical modeling technique combined with a numerical physics-based solar wind model. The Wang–Sheeley–Arge (WSA) method uses solar photospheric magnetic field observations (from Earth-based instruments) in order to estimate the inner heliospheric radial flow speed and radial magnetic field out to 21.5 solar radii from the Sun. This information is then used as input to the global numerical magnetohydrodynamic model, ENLIL, which calculates solar wind velocity, density, temperature, and magnetic field strength and polarity throughout the inner heliosphere. WSA-ENLIL calculations are presented for the several-week period encompassing the second and third flybys. This information, in conjunction with available MESSENGER data, aid in understanding the Mercury flyby observations and provide a basis for global magnetospheric modeling. We find that during both flybys, the solar wind conditions were very quiescent and would have provided only modest dynamic driving forces for Mercury's magnetospheric system. 相似文献
The Upper Permian Castile Formation of the Delaware Basin in northwest Texas and New Mexico consists of up to 600 m of evaporites and is subdivided into units of anhydrite overlain by halite. The Castile Formation has commonly been interpreted as a deep-water, deep-basin deposit in which sediments were laid down in several hundred metres of water or brine. Recent textural observations within anhydrite units, in which the thick-bedded anhydrite horizons have been interpreted as being of shallow-water origin, have challenged this assumption. This geochemical study of the oldest anhydrite unit in the Castile Formation (the Anhydrite 1 Member) attempts to resolve some of the problems regarding brine depth and evolution in the basin. The Anhydrite 1 Member has been subdivided into five major cycles on the basis of the distribution of stratigraphic units of thick-bedded anhydrite.
Stable isotopic analyses of sulphur from anhydrite, and oxygen and carbon from calcite show that the basin waters were chemically homogeneous during precipitation of anhydrite, and do not indicate any significant input of meteoric, continental-derived waters. Throughout the section studied progressive enrichment of 18O upwards within cored intervals indicates continuous evaporation of the water body. Carbon isotopes appear to indicate fluctuations in organic activity within the cycles. Trace elemental analyses of Fe, Mg, Sr, Mn, Al, Ba, Zn, Pb and Cu from the sulphate fraction of the samples show a very high variability. There is a distinct increase in trace elemental abundances at the tops of cycles which may indicate variations in precipitation kinetics. Analyses of texturally defined cycles show that up-core trends for many of the trace elements correlate with changes in δ18O, indicating a progressive increase in the influence of evaporation. In addition, cyclical variations in trace elemental composition indicate changes in basin conditions with around a 350-year cyclicity. These changes are independent of δ18O values. The geochemical data do not provide conclusive proof of water depth during deposition of the Castile Formation. The data are interpreted as reflecting small-scale changes in conditions of deposition, despite the fact that water input remained essentially constant in terms of chemical composition. 相似文献