首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   5篇
  国内免费   5篇
测绘学   3篇
大气科学   51篇
地球物理   46篇
地质学   59篇
海洋学   16篇
天文学   25篇
自然地理   30篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   9篇
  2012年   4篇
  2011年   12篇
  2010年   8篇
  2009年   11篇
  2008年   10篇
  2007年   19篇
  2006年   10篇
  2005年   14篇
  2004年   11篇
  2003年   4篇
  2002年   10篇
  2001年   6篇
  2000年   6篇
  1999年   2篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1975年   2篇
  1974年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有230条查询结果,搜索用时 71 毫秒
91.
A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.  相似文献   
92.
We report on the results of a time-series photometric survey of NGC 2362, carried out using the CTIO 4-m Blanco telescope and Mosaic-II detector as part of the Monitor project. Rotation periods were derived for 271 candidate cluster members over the mass range  0.1 ≲ M /M≲ 1.2  . The rotation period distributions show a clear mass-dependent morphology, qualitatively similar to that in NGC 2264, as would be expected from the age of this cluster. Using models of angular momentum evolution, we show that angular momentum losses over the ∼1–5 Myr age range appear to be needed in order to reproduce the evolution of the slowest rotators in the sample from the ONC to NGC 2362, as found by many previous studies. By incorporating Spitzer IRAC mid-infrared (mid-IR) measurements, we found that three to four objects showing mid-IR excesses indicative of the presence of circumstellar discs were all slow rotators, as would be expected in the disc regulation paradigm for early pre-main-sequence angular momentum evolution, but this result is not statistically significant at present, given the extremely limited sample size.  相似文献   
93.
During the early stages of galaxy evolution, the metallicity is generally low and nearby metal-poor star-forming galaxies may provide templates for primordial star formation. In particular, the dust content of such objects is of great importance, because early molecular formation can take place on grains. To gain insight into primeval galaxies at high redshift, we examine the dust content of the nearby extremely low-metallicity galaxy SBS  0335–052  which hosts a very young starburst (≲107 yr). In young galaxies, the dust formation rate in Type II supernovae governs the amount of dust, and by incorporating recent results on dust production in Type II supernovae we model the evolution of dust content. If the star-forming region is compact (≲100 pc), as suggested by observations of SBS  0335–052  , our models consistently explain the quantity of dust, far-infrared luminosity, and dust temperature in this low-metallicity object. We also discuss the H2 abundance. The compactness of the region is important to H2 formation, because the optical depth of dust for UV photons becomes large and H2 dissociation is suppressed. We finally focus on implications for damped Ly α systems.  相似文献   
94.
Summary Severe convection in the Sydney basin regularly produces destructive winds, heavy rain or flash flooding, and damage from large hail. Such convective activity is a major forecasting challenge for the Sydney basin, especially during the October to April warm season. There presently is a need to provide timely, accurate and reliable numerical guidance to supplement the current probabilistic convective outlooks, issued by the operational forecasters. Initial work has been carried out that examines two cases of severe convection in the Sydney basin. The performance of a very high resolution (2 km) numerical weather prediction (NWP) model is assessed in terms of how well it performed in providing guidance on heavy rainfall and hail, as well as other key mesoscale phenomena such as low level convergence lines. The model results discriminated well between severe convection that actually did occur in the first case (1 December, 2000) and the failure of severe convection to develop in the second case (8 December, 2000). The operational forecasters predicted severe convection to occur in both cases. It is now planned to take the next step of augmenting the quasi-subjective approach of the operational forecasters with the NWP guidance to provide an enhanced capacity to forecast severe convection in the Sydney basin. Received October 20, 2001 Revised December 28, 2001  相似文献   
95.
Atmospheric water vapor abundances in Mars’ north polar region (NPR, from 60° to 90°N) are mapped as function of latitude and longitude for spring and summer seasons, and their spatial, seasonal, and interannual variability is discussed. Water vapor data are from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Viking Orbiter (VO) Mars Atmospheric Water Detector (MAWD). The data cover three complete northern spring-summer seasons in 1977-1978, 2000-2001 and 2002-2003, and shorter periods of spring-summer seasons during 1975, 1999 and 2004. Long term interannual variability in the averaged NPR abundances may exist, with Viking MAWD observations showing twice as much water vapor during summer as the MGS TES observations more than 10 martian years (MY) later. While the averaged abundances are very similar in TES observations for the same season in different years, the spatial distributions in the early summer season do vary significantly year over year. Spatial and temporal variabilities increase between Ls ∼ 80-140°, which may be related to vapor sublimation from the North Polar Residual Cap (NPRC), or to changes in circulation. Spatial variability is observed on scales of ∼100 km and temporal variability is observed on scales of <10 sols during summer. During late spring the TES water vapor spatial distribution is seen to correlate with the low topography/low albedo region of northern Acidalia Planitia (270-360°E), and with the dust spatial distribution across the NPR during late spring-early summer. Non-uniform vertical distribution of water vapor, a regolith source or atmospheric circulation ‘pooling’ of water vapor from the NPRC into the topographic depression may be behind the correlation with low topography/low albedo. Sublimation winds carrying water vapor off the NPRC and lifting surface dust in the areas surrounding the NPRC may explain the correlation between the water vapor and dust spatial distributions. Correlation between water vapor and dust in MAWD data are only observed over low topography/low albedo area. Maximum water vapor abundances are observed at Ls = 105-115° and outside of the NPRC at 75-80°N; the TES data, however, do not extend over the NPRC and thus, this conclusion may be biased. Some water vapor appears to be released in plumes or ‘outbursts’ in the MAWD and TES datasets during late spring and early summer. We propose that the sublimation rate of ice varies across the NPRC with varying surface winds, giving rise to the observed ‘outbursts’ at some seasons.  相似文献   
96.
97.
Theoretical and Applied Climatology - Accurate assessment of the rainfall characteristics of a river basin is essential for its proper management. In this study, we examine long-term trends in...  相似文献   
98.
The second and third flybys of Mercury by the MESSENGER spacecraft occurred, respectively, on 6 October 2008 and on 29 September 2009. In order to provide contextual information about the solar wind properties and the interplanetary magnetic field (IMF) near the planet at those times, we have used an empirical modeling technique combined with a numerical physics-based solar wind model. The Wang–Sheeley–Arge (WSA) method uses solar photospheric magnetic field observations (from Earth-based instruments) in order to estimate the inner heliospheric radial flow speed and radial magnetic field out to 21.5 solar radii from the Sun. This information is then used as input to the global numerical magnetohydrodynamic model, ENLIL, which calculates solar wind velocity, density, temperature, and magnetic field strength and polarity throughout the inner heliosphere. WSA-ENLIL calculations are presented for the several-week period encompassing the second and third flybys. This information, in conjunction with available MESSENGER data, aid in understanding the Mercury flyby observations and provide a basis for global magnetospheric modeling. We find that during both flybys, the solar wind conditions were very quiescent and would have provided only modest dynamic driving forces for Mercury's magnetospheric system.  相似文献   
99.
The Upper Permian Castile Formation of the Delaware Basin in northwest Texas and New Mexico consists of up to 600 m of evaporites and is subdivided into units of anhydrite overlain by halite. The Castile Formation has commonly been interpreted as a deep-water, deep-basin deposit in which sediments were laid down in several hundred metres of water or brine. Recent textural observations within anhydrite units, in which the thick-bedded anhydrite horizons have been interpreted as being of shallow-water origin, have challenged this assumption. This geochemical study of the oldest anhydrite unit in the Castile Formation (the Anhydrite 1 Member) attempts to resolve some of the problems regarding brine depth and evolution in the basin. The Anhydrite 1 Member has been subdivided into five major cycles on the basis of the distribution of stratigraphic units of thick-bedded anhydrite.

Stable isotopic analyses of sulphur from anhydrite, and oxygen and carbon from calcite show that the basin waters were chemically homogeneous during precipitation of anhydrite, and do not indicate any significant input of meteoric, continental-derived waters. Throughout the section studied progressive enrichment of 18O upwards within cored intervals indicates continuous evaporation of the water body. Carbon isotopes appear to indicate fluctuations in organic activity within the cycles. Trace elemental analyses of Fe, Mg, Sr, Mn, Al, Ba, Zn, Pb and Cu from the sulphate fraction of the samples show a very high variability. There is a distinct increase in trace elemental abundances at the tops of cycles which may indicate variations in precipitation kinetics. Analyses of texturally defined cycles show that up-core trends for many of the trace elements correlate with changes in δ18O, indicating a progressive increase in the influence of evaporation. In addition, cyclical variations in trace elemental composition indicate changes in basin conditions with around a 350-year cyclicity. These changes are independent of δ18O values. The geochemical data do not provide conclusive proof of water depth during deposition of the Castile Formation. The data are interpreted as reflecting small-scale changes in conditions of deposition, despite the fact that water input remained essentially constant in terms of chemical composition.  相似文献   

100.
Dozens of Paleoindian sites, including the Boca Negra Wash (BNW) Folsom site (LA 124474), are scattered across a basalt plateau (the West Mesa) on the western side of the Albuquerque Basin, and adjacent uplands. The BNW site, like many others in the area, is located near a small (˜60 × 90 m) playa basin that formed in a depression on the basalt surface and was subsequently covered by an eolian sand sheet (Unit 1) dated by OSL to ˜23,000 yr B.P. Most of the basin fill is ˜2 m of playa mud (Units 2 and 3) dating ˜13,970 14C yr B.P. (17,160–16,140 cal yr B.P.) at the sand–mud interface to ˜2810 14C yr B.P. (˜2960–2860 cal yr B.P.) at the top. C/N ratios suggest that the BNW playa basin probably held water more often during the Folsom occupation; stable carbon isotope values indicate C3 vegetation was more common as well, but C4 grasses became dominant in the Holocene. Cores extracted from four playa basins nearby revealed a similar stratigraphy and geochronology, documenting presence of wetlands on playa floors during the Paleoindian occupation of the area. © 2006 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号