首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41905篇
  免费   589篇
  国内免费   354篇
测绘学   1292篇
大气科学   3056篇
地球物理   8510篇
地质学   13847篇
海洋学   3617篇
天文学   10240篇
综合类   114篇
自然地理   2172篇
  2021年   328篇
  2020年   364篇
  2019年   454篇
  2018年   972篇
  2017年   899篇
  2016年   1173篇
  2015年   664篇
  2014年   1114篇
  2013年   2015篇
  2012年   1224篇
  2011年   1613篇
  2010年   1473篇
  2009年   2033篇
  2008年   1789篇
  2007年   1805篇
  2006年   1691篇
  2005年   1278篇
  2004年   1302篇
  2003年   1190篇
  2002年   1228篇
  2001年   1088篇
  2000年   1018篇
  1999年   895篇
  1998年   888篇
  1997年   892篇
  1996年   715篇
  1995年   669篇
  1994年   626篇
  1993年   544篇
  1992年   477篇
  1991年   487篇
  1990年   466篇
  1989年   486篇
  1988年   434篇
  1987年   503篇
  1986年   457篇
  1985年   537篇
  1984年   658篇
  1983年   568篇
  1982年   560篇
  1981年   505篇
  1980年   440篇
  1979年   433篇
  1978年   445篇
  1977年   382篇
  1976年   341篇
  1975年   352篇
  1974年   326篇
  1973年   365篇
  1972年   261篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
Summary ?The NW–SE-trending Yulong porphyry Cu–Mo ore belt, situated in the Sanjiang0 area of eastern Tibet, is approximately 400 km long and 35 to 70 km wide. Complex tectonic and magmatic processes during the Himalayan epoch have given rise to favorable conditions for porphyry-type Cu–Mo mineralization. Porphyry masses of the Himalayan epoch in the Yulong ore belt are distributed in groups along regional NW–SE striking tectonic lineaments. They were emplaced mainly into Triassic and Lower Permian sedimentary-volcanic rocks. K–Ar und U–Pb isotopic datings give an intrusion age range of 57–26 Ma. The porphyries are mainly of biotite monzogranitic and biotite syenogranitic compositions. Geological and geochemical data indicate that the various porphyritic intrusions in the belt had a common or similar magma source, are metaluminous to peraluminous, Nb–Y–Ba-depleted, I-type granitoids, and belong to the high-K calc-alkaline series. Within the Yulong subvolcanic belt a number of porphyry stocks bear typical porphyry type Cu–Mo alteration and mineralization. The most prominent porphyry Co–Mo deposits include Yulong, Malasongduo, Duoxiasongduo, Mangzong and Zhanaga, of which Yulong is one of the largest porphyry Cu (Mo) deposits in China with approximately 8 × 106 tons of contained Cu metal. Hydrothermal alteration at Yulong developed around a biotite–monzogranitic porphyry stock that was emplaced within Upper Triassic limestone, siltstone and mudstone. The earliest alteration was due to the effects of contact metamorphism of the country rocks and alkali metasomatism (potassic alteration) within and around the porphyry body. The alteration of this stage was accompanied by a small amount of disseminated and veinlet Cu–Mo sulfide mineralization. Later alteration–mineralization zones form more or less concentric shells around the potassic zone, around which are distributed a phyllic or quartz–sericite–pyrite zone, a silicification and argillic zone, and a propylitic zone. Fluid inclusion data indicate that three types of fluids were involved in the alteration–mineralization processes: (1) early high temperature (660–420 °C) and high salinity (30–51 wt% NaCl equiv) fluids responsible for the potassic alteration and the earliest disseminated and/or veinlet Cu–Mo sulfide mineralization; (2) intermediate unmixed fluids corresponding to phyllic alteration and most Cu–Mo sulfide mineralization, with salinities of 30–50 wt% NaCl equiv and homogenization temperatures of 460–280 °C; and (3) late low to moderate temperature (300–160 °C) and low salinity (6–13 wt% NaCl equiv) fluids responsible for argillic and propylitic alteration. Hydrogen and oxygen isotopic studies show that the early hydrothermal fluids are of magmatic origin and were succeeded by increasing amounts of meteoric-derived convective waters. Sulfur isotopes also indicate a magmatic source for the sulfur in the early sulfide mineralization, with the increasing addition of sedimentary sulfur outward from the porphyry stock. Received August 29, 2001; revised version accepted May 1, 2002 Published online: November 29, 2002  相似文献   
42.
43.
We present the modeling of the ultraviolet and optical spectra obtained simultaneously on 1993 April 15 with the HST and at Lick Observatory. A Monte Carlo code is employed in the modeling and a comparison is made between models reported by different groups. With an atmosphere similar to the Sun in chemical composition, the observed spectral lines are well reproduced by a power law density structure of index around 20 except the strong H and HeI λ5876 lines which have peculiar absorption profiles. The photospheric velocity is found to be 9500 km/s and the blackbody temperature of the spectrum is 7990 K. For H and HeI λ5876, we suggest a two-component density structure which has a smoother layer located immediately outside the steeply decreasing inner envelope. The power law indices are most probably 20 and 3, respectively, with the transition point at about 13 000 km/s. In addition, this outer smooth layer serves to flatten the far UV spectrum as observed.  相似文献   
44.
45.
The Palaeoproterozoic Lapland Granulite Belt is a seismically reflective and electrically conductive sequence of deep crustal (6–9 kbar) rocks in the northern Fennoscandian Shield. It is composed of garnet-sillimanite gneisses (khondalites) and pyroxene granulites (enderbites) which in certain thrust sheets form about 500 m thick interlayers. The structure was formed by the intrusion of intermediate to basic magmas into turbiditic sedimentary rocks under granulite facies metamorphism accompanied by shearing of the deep crust about 1.93–1.90 Gyr ago (Gal. Granulites were upthrust 1.90–1.87 Ga and the belt was divided by crustal scale duplexing into four structural units whose layered structure was preserved. The thrust structures are recognized by the repetition of lithological ensembles and by discordant structural patterns well distinguishable in airborne magnetic and electromagnetic data. Thrusting gave rise to clockwise pressure-temperature evolution of the belt. However, some basic rocks possibly record an isobaric cooling path. The low bulk resistivity of the belt (200–1000 Ωm) is caused by interconnected graphite and subordinate sulphides in shear zones. On the basis of carbon isotope ratios this graphite is derived mostly from sedimentary organic carbon. The seismic reflectivity of the belt may be caused by velocity and density differences between pyroxene granulites and khondalites, as well as by shear zones.  相似文献   
46.
Thinly stratified sedimentary deposits in a heterogeneous field were investigated to obtain basic physical data for the simulation of water flow. A procedure is described which translates a thinly stratified soil profile into a number of functional layers using functional hydrological properties. A functional layer is defined as a combination of one or more soil horizons and should (i) be recognizable during a soil survey using an auger and (ii) show significantly different functional hydrological properties when compared with another functional layer. This procedure gave three easily recognizable functional layers. Sets of hydrological characteristics of these three functional layers were obtained by physical measurements of the soil and by estimation, using textural data for classification into a standard Dutch series. The performance of several combinations of these sets was tested by comparing simulated and measured soil matric potentials for seven plots during one year. The best simulation results were obtained if measured soil hydraulic characteristics were used for relatively homogeneous functional layers and if the soil hydraulic characteristics were estimated at each location for the most heterogeneous layer.  相似文献   
47.
48.
In this paper, the currently accepted correlation of the Early Pleistocene Ludhamian stage of England with the Tiglian‐A sub‐stage of the Netherlands is challenged. Recent investigations of Early Pleistocene marine North Sea deposits from a borehole near Noordwijk (the Netherlands) yielded evidence from molluscs, dinoflagellate cysts and sporomorphs for an alternation of warm‐temperate and arctic intervals within the Praetiglian and Tiglian stages. Marine equivalents of the terrestrial‐based pollen sub‐stages Tiglian A and B have been recognised in the upper part of the sequence. A Praetiglian age can be assigned to the lower part of the sequence on the basis of mollusc analysis. Within the Praetiglian, an alternation of warm and cold phases has been recognised from both the dinoflagellate cyst and molluscan records. Three cold phases within the Praetiglian are tentatively correlated with marine isotope stages (MIS) 96–100. The molluscan assemblages provide evidence for climate forcing of the sea level: highest sea levels are reached in the warm‐temperate intervals. Within the Praetiglian, an interval with an acme zone of the dinoflagellate cyst Impagidinium multiplexum, is correlated with the Ludhamian and tentatively linked to MIS 97 and/or MIS 96. The cold molluscan assemblages from the Noordwijk borehole include an acme zone of Megayoldia thraciaeformis, the first and only occurrence of this North Pacific bivalve in the North Sea Basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
49.
Erosion of man-made, forestry drainage channels occurs when the plough cuts through the surface peat layer into the underlying erodible mineral soil. A procedure is developed, based on hydraulic considerations, which will allow the drainage engineer to design stable drainage networks in upland forestry plantations. An example design chart is given for an erodible sandy loam type soil.  相似文献   
50.
The paper provides a new stereo‐analytical method, which is a combination of the stereographic method and analytical methods, to separate finite removable blocks from the infinite and tapered blocks in discontinuous rock masses. The methodology has applicability to both convex and concave blocks. Application of the methodology is illustrated through examples. Addition of this method to the existing block theory procedures available in the literature improves the capability of block theory in solving practical problems in rock engineering. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号