全文获取类型
收费全文 | 130篇 |
免费 | 3篇 |
国内免费 | 12篇 |
专业分类
测绘学 | 3篇 |
大气科学 | 2篇 |
地球物理 | 9篇 |
地质学 | 79篇 |
海洋学 | 7篇 |
天文学 | 36篇 |
综合类 | 4篇 |
自然地理 | 5篇 |
出版年
2023年 | 3篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 6篇 |
2018年 | 5篇 |
2017年 | 6篇 |
2016年 | 5篇 |
2015年 | 4篇 |
2014年 | 10篇 |
2013年 | 4篇 |
2012年 | 7篇 |
2011年 | 8篇 |
2010年 | 7篇 |
2009年 | 8篇 |
2008年 | 9篇 |
2007年 | 10篇 |
2006年 | 7篇 |
2005年 | 1篇 |
2004年 | 7篇 |
2003年 | 6篇 |
2002年 | 5篇 |
2001年 | 1篇 |
2000年 | 5篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1993年 | 1篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1981年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有145条查询结果,搜索用时 13 毫秒
71.
Unit-cell dimensions of a natural phlogopite from Pargas, Finland, have been determined in the temperature interval of 27–1050 °C
by X-ray powder diffraction technique. Expansion rates vary discontinuously with temperature with a break at 412 °C. Below
this temperature, the linear expansions (α) for a, b and c axis lengths are 3.74 × 10−5 K−1, 1.09 × 10−5 K−1, and 1.19 × 10−5 K−1, respectively, and above that they are 0.86 × 10−5 K−1, 0.80 × 10−5 K−1, and 1.93 × 10−5 K−1. The volume thermal expansion coefficients are 6.26 × 10−5 K−1 and 3.71 × 10−5 K−1 for low-temperature and high-temperature intervals, respectively. The observed kink in the rate of thermal expansions with
temperature could be due to the different mode of structural changes. Thermogravimetric analysis of the sample indicates the
oxidation of iron in the temperature range of 500–600 °C and dehydroxylation as well as decomposition of phlogopite in the
temperature range of 900–1200 °C.
Received: 8 September 1998 / Accepted: 28 February 2000 相似文献
72.
73.
Vitaly ISUPOV SODOV Ariunbileg Svetlana SHATSKAYA Marina KOLPAKOVA Ljudmila RAZVOROTNEVA Alexander VLADIMIROV Stepan SHVARTSEV Leonid KUIBIDA Sergey KRIVONOGOV Ekaterina MOROZ 《《地质学报》英文版》2014,88(Z1):137-138
正1 Introduction Increasing demand for uranium raw materials for the nuclear industry has stimulated interest in non-traditional sources,including hydromineral ones[Qin,2009].Those are saline lakes located in the uranium ore districts.Accumulation of uranium in such lakes results from the leaching of uranium from the rocks by surface and ground 相似文献
74.
The Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province, located in southwestern margin of the Yangtze Block, is an important part of the large-scale low-temperature metallogenic domain in southwestern China. The Maliping Pb-Zn deposit, situated in the central part of Zhaotong-Qujing metallogenic belt, was found in northeastern Yunnan Province recently. The orebody is hosted in Late Cambrian Yuhucun Formation, occurring as stratabound, tense and venis. The mineral assemblage of the Maliping deposit is relatively simple. The main sulfide minerals are sphalerite and galena with minor pyrite. Gangue minerals include mainly dolomite, calcite, quartz and barite. LA-ICPMS spots and mapping analysis for the different sulfides from Maliping Pb-Zn deposit, and the distribution and existing forms of germanium, cadmium, indium and other trace elements were investigated. The results show that different sulfides are characterized by different contents of trace elements. Mn, Cu, Sn, Cd, In and Ge are mainly enriched in sphalerite, while galena from this deposit is enrichment of Ag, Sb and Se, and pyrite is characterized by enrichment of As, Co and Ni. Comparing with the content of dispersed elements in different sulfides, the results indicate that sphalerite is the primary carrier mineral of Ge, In and Cd. Cd, Ge, In, Mn, As, Sb and Ag occur as isomorphous substitution in the sphalerite, and Cu mostly exists in sphalerite as isomorphism but part of Cu occurs as micro-inclusions (chalcopyrite) in sphalerite. Considered the distinct positive relationship between Cu and Ge, the results imply that the substitution mechanism of Ge and Cu is possibly 3Zn(2+) <-> Ge4+ + 2Cu(+). Additionally, sphalerite from Maliping Pb-Zn deposit is characterized by enrichment of Cd, Ge and depleted in Mn, Fe, Co and Sn which coincides with the feature of MVT Pb-Zn deposit and differs from the sedimentary-exhalative deposit and magmatic-hydrothermal deposit. On account of the geological features, other geochemical researches and its ore-forming temperature belonging to low temperature, it is suggested that the Maliping deposit belongs to an MVT Pb-Zn deposit. Notably, we imply that ore-forming fluid extracted indium of magmatic and volcaniclastic rocks from the metamorphic basement, resulting in the enrichment of indium in sphalerite from the deposit. 相似文献
75.
The Korosten complex is a Paleoproterozoic gabbro–anorthosite–rapakivi granite intrusion which was emplaced over a protracted time interval — 1800–1737 Ma. The complex occupies an area of about 12 000 km2 in the north-western region of the Ukrainian shield. About 18% of this area is occupied by various mafic rocks (gabbro, leucogabbro, anorthosite) that comprise five rock suites: early anorthositic A1 (1800–1780 Ma), main anorthositic A2 (1760 Ma), early gabbroic G3 (between 1760 and 1758 Ma), late gabbroic G4 (1758 Ma), and a suite of dykes D5 (before 1737 Ma). In order to examine the relationships between the various intrusions and to assess possible magmatic sources, Nd and Sr isotopic composition in mafic whole-rock samples were measured. New Sr and Nd isotope measurements combined with literature data for the mafic rocks of the Korosten complex are consistent and enable construction of Rb–Sr and Sm–Nd isochronous regressions that yield the following ages: 1870 ± 310 Ma (Rb–Sr) and 1721 ± 90 Ma (Sm–Nd). These ages are in agreement with those obtained by the U–Pb method on zircons and indicate that both Rb–Sr and Sm–Nd systems have remained closed since the time of crystallisation. In detail, however, measurable differences in isotopic composition of the Korosten mafic rock depending on their suite affiliation were revealed. The oldest, A1 rocks have lower Sr (87Sr/86Sr(1760) = 0.70233–0.70288) and higher Nd (εNd(1760) = 1.6–0.9) isotopic composition. The most widespread A2 anorthosite and leucogabbro display higher Sr and lower Nd isotopic composition: 87Sr/86Sr(1760) = 0.70362, εNd(1760) varies from 0.2 to − 0.7. The G3 gabbro–norite has slightly lower εNd(1760) varying from − 0.7 to − 0.9. Finally, G4 gabbroic rocks show relatively high initial 87Sr/86Sr (0.70334–0.70336) and the lowest Nd isotopic composition (εNd(1760) varies from − 0.8 to − 1.4) of any of the mafic rocks of the Korosten complex studied to date. On the basis of Sr and Nd isotopic composition we conclude that Korosten initial melts may have inherited their Nd and Sr isotopic characteristics from the lower crust created during the 2.05–1.95 Ga Osnitsk orogeny and 2.0 Ga continental flood basalt event. Indeed, εNd(1760) values in Osnitsk rocks vary from 0.0 to − 1.9 and from 0.2 to 3.4 in flood basalts. We suggest that these rocks being drawn into the upper mantle might melt and give rise to the Korosten initial melts. 87Sr/86Sr(1760) values also support this interpretation. We suggest that the Sr and Nd isotopic data currently available on mafic rocks of the Korosten complex are consistent with an origin of its primary melts by partial melting of lower crustal material due to downthrusting of the lower crust into upper mantle forced by Paleoproterozoic amalgamation of Sarmatia and Fennoscandia. 相似文献
76.
Anna Spivak Natalia Solopova Valerio Cerantola Elena Bykova Egor Zakharchenko Leonid Dubrovinsky Yuriy Litvin 《Physics and Chemistry of Minerals》2014,41(8):633-638
Magnesite, siderite and ferromagnesites Mg1?x Fe x CO3 (x = 0.05, 0.09, 0.2, 0.4) were characterized using in situ Raman spectroscopy at high pressures up to 55 GPa. For the Mg–Fe-carbonates, the Raman peak positions of six modes (T, L, ν4, ν1, ν3 and 2ν2) in the dependence of iron content in the carbonates at ambient conditions are presented. High-pressure Raman spectroscopy shows that siderite undergoes a spin transition at ~40 GPa. The examination of the solid solutions with compositions Mg0.6Fe0.4CO3, Mg0.8Fe0.2CO3, Mg0.91Fe0.09CO3 and Mg0.95Fe0.05CO3 indicates that with increase in the amount of the Fe spin transition pressure increases up to ~45 GPa. 相似文献
77.
Jan Paav Ilja Knésl Anna Vymazalová Ivan Vavín Ludmila Ivanovna Gurskay Leonid Ruslanovich Kolbantsev 《地学前缘(英文版)》2011,2(1):81-85
The Polar Urals region of northern Russia is well known for large chromium (Cr)-bearing massifs with major chromite orebodies, including the Centralnoye I deposit in the Ray-Iz ultramafic massif of the Ural ophiolite belt. New data on platinum (Pt)-group elements (PGE), geochemistry and mineralogy of the host dunite shows that the deposit has anomalous iridium (Ir) values. These values indicate the predominance of ruthenium–osmium–iridium (Ru–Os–Ir)-bearing phases among the platinum-group mineral (PGM) assemblage that is typical of mantle-hosted chromite ores. Low Pt values in chromites and increased Pt values in host dunites might reflect the presence of cumulus PGM grains. The most abundant PGM found in the chromite is erlichmanite (up to 15 μm). Less common are cuproiridsite (up to 5 μm), irarsite (up to 4–5 μm), and laurite (up to 4 μm). The predominant sulfide is heazlewoodite, in intergrowth with Ni–Fe alloys, sporadically with pentlandite, and rarely with pure nickel. Based on the average PGE values and estimated Cr-ore resources, the Centralnoye I deposit can be considered as an important resource of PGE. 相似文献
78.
79.
Subduction zones with deep seismicity are believed to be associated with the descending branches of convective flows in the mantle and are subordinated to them. Therefore, the position of subduction zones can be considered as relatively fixed with respect to the steady-state system of convective flows. The lithospheric plate overhanging a subduction zone (as a rule of continental type) may:
- 1. (1) either move away from the subduction zone; or
- 2. (2) move onto it. In the first case extensional conditions originate behind the subduction zone and the new oceanic crust of back-arc basins forms. In the second case active Andean-type continental margins with thickening of the crust and lithosphere are observed.
80.
Glacier activity at Russkaya Gavan', north-west Novaya Zemlya (Arctic Russia), is reconstructed by particle size analysis of three fjord sediment cores in combination with 14 C and 210 Pb dating. Down-core logging of particle size variation reveals at least two intervals with sediment coarsening during the past eight centuries. By comparing them with reconstructions of summer temperature and atmospheric circulation, these intervals are interpreted to represent two cycles of glacier advance and retreat sometime during ca. AD 1400–1700 and AD 1700–present. Sediment accumulation thus appears to be sensitive to century-scale fluctuations of the Barents Sea climate. The identification of two glacier cycles in the glaciomarine record from Russkaya Gavan' demonstrates that during the "Little Ice Age" major glacier fluctuations on Novaya Zemlya occurred in broad synchrony with those in other areas around the Barents Sea. 相似文献