首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   2篇
地质学   10篇
天文学   1篇
  2020年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
排序方式: 共有13条查询结果,搜索用时 62 毫秒
11.
Large urban areas are typically characterized by a mosaic of different land uses, with contrasting mixes of impermeable and permeable surfaces that alter “green” and “blue” water flux partitioning. Understanding water partitioning in such heterogeneous environments is challenging but crucial for maintaining a sustainable water management during future challenges of increasing urbanization and climate warming. Stable isotopes in water have outstanding potential to trace the partitioning of rainfall along different flow paths and identify surface water sources. While isotope studies are an established method in many experimental catchments, surprisingly few studies have been conducted in urban environments. Here, we performed synoptic sampling of isotopes in precipitation, surface water and groundwater across the complex city landscape of Berlin, Germany, for a large -scale overview of the spatio-temporal dynamics of urban water cycling. By integrating stable isotopes of water with other hydrogeochemical tracers we were able to identify contributions of groundwater, surface runoff during storm events and effluent discharge on streams with variable degrees of urbanization. We could also assess the influence of summer evaporation on the larger Spree and Havel rivers and local wetlands during the exceptionally warm and dry summers of 2018 and 2019. Our results demonstrate that using stable isotopes and hydrogeochemical data in urban areas has great potential to improve our understanding of water partitioning in complex, anthropogenically-affected landscapes. This can help to address research priorities needed to tackle future challenges in cities, including the deterioration of water quality and increasing water scarcity driven by climate warming, by improving the understanding of time-variant rainfall-runoff behaviour of urban streams, incorporating field data into ecohydrological models, and better quantifying urban evapotranspiration and groundwater recharge.  相似文献   
12.
The provenance of Cenomanian to Eocene flysch deposits accreted along the northern margin of the Eastern Alps has been investigated by means of zircon fission-track (FT) geochronology and zircon morphology. The Rhenodanubian flysch and Ybbsitz klippen zone comprise several nappes representing the Main flysch and Laab basins. The Laab basin received sediments of stable European provenance, indicated by pre-Variscan, Variscan, and Permian–Triassic zircon FT ages, and was thus located in the immediate south of the European margin. The Main flysch basin was supplied mainly from the evolving Eastern Alps and was therefore situated south of the Laab basin. Zircon populations with Permian to Jurassic cooling ages in the Main flysch basin are related to increased heat fluxes during the break-up of Pangaea and are probably derived from the northwestern part of the Eastern Alps. The dominant Cretaceous zircon FT cooling ages reflect Eoalpine metamorphism in the Austroalpine realm.  相似文献   
13.
Re-evaluation of the river history, palaeosurface levels and exhumation history in northern Switzerland for the last 10 million years reveals that distinct morphotectonic events about 4.2 and 2.8 million years ago (Ma) caused major reorganisation of river networks and morphosculpture. As a result of the earlier formation of the Swiss Jura, potential relief energy in the piggy-back North Alpine Foreland Basin (NAFB) of northern central Switzerland south of the Jura fold belt was built up after 11–10 Ma. It was suddenly released by river capture at about 4.2 Ma when the Aare-Danube was captured by a tributary of the Rhône-Doubs river system which rooted southeast of the Black forest. This event triggered rapid denudation of weakly consolidated Molasse sediments, in the order of about 1 km, as constrained by apatite fission track data from drillholes in the NAFB. Likely mechanisms of river capture are (a) headward erosion of Rhône-Doubs tributaries, (b) uplift and rapidly increasing erosion of the Swiss Alps after about 5.3 Ma, and (c) gravel aggradation at the eastern termination of the Jura fold belt in the course of eastward and northward tilt of the piggy-back NAFB. A morphotectonic event between 4.2 and 2.5 Ma, probably at about 2.8 Ma, caused a phase of planation, accompanied by local gravel aggradation and temporary storage of Alpine debris. Between 2.8 and 2.5 Ma, the Aare-Rhône river system is cannibalised by the modern Rhine River, the latter later connecting with the Alpine Rhine River.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号