首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10780篇
  免费   311篇
  国内免费   395篇
测绘学   282篇
大气科学   991篇
地球物理   2374篇
地质学   3816篇
海洋学   1253篇
天文学   2125篇
综合类   73篇
自然地理   572篇
  2023年   54篇
  2022年   74篇
  2021年   100篇
  2020年   113篇
  2019年   144篇
  2018年   365篇
  2017年   310篇
  2016年   410篇
  2015年   247篇
  2014年   425篇
  2013年   620篇
  2012年   371篇
  2011年   595篇
  2010年   467篇
  2009年   640篇
  2008年   511篇
  2007年   489篇
  2006年   472篇
  2005年   425篇
  2004年   384篇
  2003年   360篇
  2002年   339篇
  2001年   290篇
  2000年   277篇
  1999年   227篇
  1998年   212篇
  1997年   196篇
  1996年   175篇
  1995年   166篇
  1994年   132篇
  1993年   108篇
  1992年   96篇
  1991年   102篇
  1990年   94篇
  1989年   94篇
  1988年   72篇
  1987年   124篇
  1986年   79篇
  1985年   79篇
  1984年   96篇
  1983年   101篇
  1982年   94篇
  1981年   84篇
  1980年   77篇
  1979年   63篇
  1977年   63篇
  1976年   52篇
  1975年   50篇
  1974年   40篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
401.
402.
A new numerical approach is proposed in this study to model the mechanical behaviors of inherently anisotropic rocks in which the rock matrix is represented as bonded particle model, and the intrinsic anisotropy is imposed by replacing any parallel bonds dipping within a certain angle range with smooth‐joint contacts. A series of numerical models with β = 0°, 15°, 30°, 45°, 60°, 75°, and 90° are constructed and tested (β is defined as the angle between the normal of weak layers and the maximum principal stress direction). The effect of smooth‐joint parameters on the uniaxial compression strength and Young's modulus is investigated systematically. The simulation results reveal that the normal strength of smooth‐joint mainly affects the behaviors at high anisotropy angles (β > 45°), while the shear strength plays an important role at medium anisotropy angles (30°–75°). The normal stiffness controls the mechanical behaviors at low anisotropy angles. The angle range of parallel bonds being replaced plays an important role on defining the degree of anisotropy. Step‐by‐step procedures for the calibration of micro parameters are recommended. The numerical model is calibrated to reproduce the behaviors of different anisotropic rocks. Detailed analyses are conducted to investigate the brittle failure process by looking at stress‐strain behaviors, increment of micro cracks, initiation and propagation of fractures. Most of these responses agree well with previous experimental findings and can provide new insights into the micro mechanisms related to the anisotropic deformation and failure behaviors. The numerical approach is then applied to simulate the stress‐induced borehole breakouts in anisotropic rock formations at reduced scale. The effect of rock anisotropy and stress anisotropy can be captured. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
403.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
404.
This paper presents semi‐analytical solutions to Fredlund and Hasan's one‐dimensional consolidation of unsaturated soils with semi‐permeable drainage boundary under time‐dependent loadings. Two variables are introduced to transform two coupled governing equations of pore‐water and pore‐air pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. The pore‐water pressure, pore‐air pressure and settlement are obtained in the Laplace domain. Crump's method is adopted to perform the inverse Laplace transform in order to obtain semi‐analytical solutions in time domain. It is shown that the present solutions are more general and have a good agreement with the existing solutions from literatures. Furthermore, the current solutions can also be degenerated into conventional solutions to one‐dimensional consolidation of unsaturated soils with homogeneous boundaries. Finally, several numerical examples are provided to illustrate consolidation behavior of unsaturated soils under four types of time‐dependent loadings, including instantaneous loading, ramp loading, exponential loading and sinusoidal loading. Parametric studies are illustrated by variations of pore‐air pressure, pore‐water pressure and settlement at different values of the ratio of air–water permeability coefficient, depth and loading parameters. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
405.
To accurately predict soil volume changes under thermal cycles is of great importance for analysing the performance of many earth structures such as the energy pile and energy storage system. Most of the existing thermo‐mechanical models focus on soil behaviour under monotonic thermal loading only, and they are not able to capture soil volume changes under thermal cycles. In this study, a constitutive model is proposed to simulate volume changes of saturated soil subjected to cyclic heating and cooling. Two surfaces are defined and used: a bounding surface and a memory surface. The bounding surface and memory surface are mainly controlled by the preconsolidation pressure (a function of plastic volumetric strain) and the maximum stress experienced by the soil, respectively. Under thermal cycles, the distance of the two surfaces and plastic modulus increase with an accumulation of plastic strain. By adopting the double surface concept, a new elastoplastic model is derived from an existing single bounding surface thermo‐mechanical model. Comparisons between model predictions and experimental results reveal that the proposed model is able to capture soil volume changes under thermal cycles well. The plastic strain accumulates under thermal cycles, but at a decreasing rate, until stabilization. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
406.
407.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
408.
409.
410.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号