Eclogitic rocks were sampled from two zones in the basement of the Sredna Gora terrane (central western Bulgaria): (1) partially
retrogressed eclogites and amphibolites embedded in sillimanite-bearing garnet-micaschists with kyanite relics and migmatites
and (2) banded amphibolites associated with muscovite-bearing metagranites within two-mica paragneisses. Rutile relics and
oligoclase + green hornblende + epidote ± biotite pseudomorphs after garnet suggest an eclogite facies event. A tholeiitic,
transitional affinity was determined for the protoliths, suggesting a continental rift environment, consistent with several
eclogite-bearing complexes in the eastern segments of the Variscan belt that arose from the Cambro-Ordovician Gondwana break-up.
Decreasing pressure after the eclogite overprint was demonstrated by (a) diopside-albite symplectite, and (b) plagioclase
+ red–brown to green amphibole kelyphite. The early static re-equilibration, dated to 398 ± 5.2 Ma by 40Ar–39Ar technique, was followed by an amphibolite facies foliation, which was pervasive in amphibolites, gneisses and micaschists,
and poorly developed in eclogites. The lithospheric PT paths corresponding to higher and lower metamorphic gradients reflect
the juxtaposition of crustal and lithospheric mantle units, respectively. In the build-up of the basement of the Balkan orogen,
the physical properties of the lithological complexes might have influenced the collisional pattern of involved microplates. 相似文献
Multiple geochemical tracers [ion chemistry, stable isotopes of water, chlorofluorocarbons (CFC), tritium] and a 25-year-long record of discharge were used to understand residence times and flow paths of groundwater seeps in the fractured rock aquifer surrounding the Mission Tunnel, Santa Barbara, California. Tritium data from individual seeps indicate that seep waters are a mixture of >45-year-old (recharged prior to the nuclear bomb tests) and young groundwater. CFC data support this interpretation, however, a two-end member mixing model cannot completely explain the age tracer data. Microbial degradation and partial re-equilibration complicate the CFC signal. Spectral analysis of precipitation and groundwater seepage records shows that seepage lags precipitation by 3 months. This delay is related to the advancement of the wetting front and increasing the number of active flow paths. Additionally, the amount of seepage produced by precipitation is less during extended periods of drought than during normal or wet periods, suggesting antecedent conditions strongly affect flow through this fractured rock aquifer. 相似文献
This paper presents a constitutive model that predicts the water retention behaviour of compacted clays with evolving bimodal pore size distributions. In line with previous research, the model differentiates between the water present inside the saturated pores of the clay aggregates (the microstructure) and the water present inside the pores between clay aggregates (the macrostructure). A new formulation is then introduced to account for the effect of the macrostructural porosity changes on the retention behaviour of the soil, which results in a consistent evolution of the air-entry value of suction with volumetric deformations. Data from wetting tests on three different active clays (i.e. MX-80 bentonite, FEBEX bentonite, and Boom clay), subjected to distinct mechanical restraints, were used to formulate, calibrate, and validate the proposed model. Results from free swelling tests were also modelled by using both the proposed double porosity model and a published single porosity model, which confirmed the improvement in the predictions of degree of saturation by the present approach. The proposed retention model might be applied, for example, to the simulation of the hydromechanical behaviour of engineered bentonite barriers in underground nuclear waste repositories, where compacted active clays are subjected to changes of both suction and porosity structure under restrained volume conditions.
This paper reports a preliminary investigation of CO2 sequestration and seal integrity at Teapot Dome oil field, Wyoming, USA, with the objective of predicting the potential risk
of CO2 leakage along reservoir-bounding faults. CO2 injection into reservoirs creates anomalously high pore pressure at the top of the reservoir that could potentially hydraulically
fracture the caprock or trigger slip on reservoir-bounding faults. The Tensleep Formation, a Pennsylvanian age eolian sandstone
is evaluated as the target horizon for a pilot CO2 EOR-carbon storage experiment, in a three-way closure trap against a bounding fault, termed the S1 fault. A preliminary geomechanical
model of the Tensleep Formation has been developed to evaluate the potential for CO2 injection inducing slip on the S1 fault and thus threatening seal integrity. Uncertainties in the stress tensor and fault
geometry have been incorporated into the analysis using Monte Carlo simulation. The authors find that even the most pessimistic
risk scenario would require ∼10 MPa of excess pressure to cause the S1 fault to reactivate and provide a potential leakage
pathway. This would correspond to a CO2 column height of ∼1,500 m, whereas the structural closure of the Tensleep Formation in the pilot injection area does not exceed
100 m. It is therefore apparent that CO2 injection is not likely to compromise the S1 fault stability. Better constraint of the least principal stress is needed to
establish a more reliable estimate of the maximum reservoir pressure required to hydrofracture the caprock. 相似文献
Seismic wave transmission and digital image correlation (DIC) are employed to study slip processes along frictional discontinuities. A series of biaxial compression experiments are performed on gypsum specimens with non-homogeneous contact surfaces. The specimens are composed of two blocks with perfectly mated contact surfaces with a smooth surface with low frictional strength on the upper half and a rough surface with high frictional strength on the lower half. Compressional, P, and shear, S, wave pulses were transmitted through the discontinuity while digital images of the specimen surface were acquired during the test. A distinct peak in the amplitude of transmitted wave occurs prior to the peak shear strength and is considered a “precursor” to the failure. Precursors indicate that slip initiates from the smooth surface and extends to the rough surface as the shear load is increased. From the DIC data, slip is identified as a jump in the displacement field along the fracture that initiates from the smooth surface and propagates to the rough surface. Precursors are associated with an increase in the rate of slip across the discontinuity and are a measure of the reduction in the fracture shear stiffness. 相似文献
Photoautotrophic bacteria that oxidize ferrous iron (Fe[II]) under anaerobic conditions are thought to be ancient in origin, and the ferric (hydr)oxide mineral products of their metabolism are likely to be preserved in ancient rocks. Here, two enrichment cultures of Fe(II)-oxidizing photoautotrophs and a culture of the genus Thiodictyon were studied with respect to their ability to fractionate Fe isotopes. Fe isotope fractionations produced by both the enrichment cultures and the Thiodictyon culture were relatively constant at early stages of the reaction progress, where the 56Fe/54Fe ratios of poorly crystalline hydrous ferric oxide (HFO) metabolic products were enriched in the heavier isotope relative to aqueous ferrous iron (Fe[II]aq) by ∼1.5 ± 0.2‰. This fractionation appears to be independent of the rate of photoautotrophic Fe(II)-oxidation, and is comparable to that observed for Fe isotope fractionation by dissimilatory Fe(III)-reducing bacteria. Although there remain a number of uncertainties regarding how the overall measured isotopic fractionation is produced, the most likely mechanisms include (1) an equilibrium effect produced by biological ligands, or (2) a kinetic effect produced by precipitation of HFO overlaid upon equilibrium exchange between Fe(II) and Fe(III) species. The fractionation we observe is similar in direction to that measured for abiotic oxidation of Fe(II)aq by molecular oxygen. This suggests that the use of Fe isotopes to identify phototrophic Fe(II)-oxidation in the rock record may only be possible during time periods in Earth’s history when independent evidence exists for low ambient oxygen contents. 相似文献
Turbidity currents and their deposits can be investigated using several methods, i.e. direct monitoring, physical and numerical modelling, sediment cores and outcrops. The present study focused on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in eleven clusters of closely spaced thin beds. Depositional processes and sources for three of those eleven clusters are studied at three coring sites. Bathymetrical data and seismic reflection profiles are used to understand the specific geomorphology of each site. X‐ray, thin sections and CT scan imagery combined with grain‐size, geochemical and mineralogical measurements on the cores allow characterization of the turbidites. Turbidites included in each cluster were produced by remobilization of surficial slope sediment, a process identified in very few studies worldwide. Three types of turbidites are distinguished and compared with deposits obtained in flume studies published in the literature. Type 1 is made of an ungraded clayey silt layer issued from a cohesive flow. Type 2 is composed of a partially graded clayey sand layer overlain by a mud cap, attributed to a transitional flow. Type 3 corresponds to a graded clayey sand layer overlain by a mud cap issued from a turbulence‐dominated flow. While the published experimental studies show that turbulence is damped by cohesion for low clay content, type 3 deposits of this study show evidence for a turbulence‐dominated mechanism despite their high clay content. This divergence may in part relate to input variables, such as water chemistry and clay mineralogy, that are not routinely considered in experimental studies. Furthermore, the large sedimentological variety observed in the turbidites from one coring site to another is related to the evolution of a sediment flow within a field‐scale basin made of a complex physiography that cannot be tackled by flume experiments. 相似文献
The origin of oceanic islands has been the subject of much speculation, starting with Darwin almost two centuries ago. Two classes of oceanic islands can be identified: ‘volcanic islands’, which form due to excess volcanism caused by melting anomalies in the suboceanic mantle, and ‘tectonic islands’, which form due to transpressive and/or transtensional tectonics of blocks of oceanic lithosphere along transform faults. Modern and sunken tectonic islands from the Atlantic Ocean and Indian Ocean and the Caribbean Sea and Red Sea expose mantle and lower‐crust lithologies and display an elongated narrow morphology; in contrast, volcanic islands expose basalts and have near‐circular morphology. Both are often capped by carbonate platforms. The life cycle of tectonic islands tends to be more complex than that of most volcanic islands; their elongated narrow morphology, together with their tectonic instability and high seismicity, affect the architecture of the carbonate platforms capping them, limiting coral reef development and favouring rhodalgal–foramol biota associations. 相似文献