首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   67篇
  国内免费   12篇
测绘学   15篇
大气科学   57篇
地球物理   285篇
地质学   310篇
海洋学   105篇
天文学   100篇
综合类   5篇
自然地理   67篇
  2024年   5篇
  2023年   8篇
  2022年   7篇
  2021年   24篇
  2020年   33篇
  2019年   35篇
  2018年   35篇
  2017年   40篇
  2016年   47篇
  2015年   42篇
  2014年   47篇
  2013年   49篇
  2012年   50篇
  2011年   60篇
  2010年   61篇
  2009年   48篇
  2008年   41篇
  2007年   40篇
  2006年   30篇
  2005年   30篇
  2004年   35篇
  2003年   22篇
  2002年   25篇
  2001年   16篇
  2000年   17篇
  1999年   11篇
  1998年   9篇
  1997年   11篇
  1996年   10篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   2篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有944条查询结果,搜索用时 171 毫秒
291.
There are many factors and mechanisms capable of influencing and perturbing rainfall in both African and Indian monsoon regions. Using observed data and ensembles of Atmospheric General Circulation Model simulations, evidence is presented that an association between the two systems exists on decadal timescales and the mechanism responsible for this common mode is suggested. Decadal variability of rainfall in the two monsoon systems results from a large scale forcing induced by an interplay of different ocean basins. The emerging pattern is characterized by warmer (cooler) equatorial and cooler (warmer) extratropical regions, more visible in the northern hemisphere. This large scale forcing pattern leads to an upper-level pressure gradient between the equator and the monsoon regions which modifies also the Tropical Easterly Jet, thus providing a potential link between the African and Indian monsoon. The response is baroclinic, therefore at low levels, the pressure gradient reverses and leads to increased (reduced) pressure over the Saharan and Indian region, both being favourable for a weakening (strengthening) of the respective monsoons. Therefore, the predictability of the monsoon trends depends mainly on how well the sea surface temperature modes, which modulate the monsoons variability, can be predicted.  相似文献   
292.
Glaciers in the upstream Manla Reservoir in the Nianchu River Basin are crucial for agriculture and hydropower in the "One River and Two Streams" area. Rising temperature has caused widespread retreat of glaciers on the Tibetan Plateau during the last few decades. In this study, glacier variations under climate change in the Nianchu River Basin are quantified and their influence are evaluated by analyzing 1980 aerial topographic maps, 1990 Landsat TM, 2000 Landsat ETM+, and 2005 CBERS remotely sensed images. It is found that from 1980 to 2005, the debris-free glacier area shrank by 7.3% (13.42 km2). Glacier shrinkage will have a positive effect on agriculture, hydropower and eco-environment in the near future. However, because the large number of small glaciers (<2 km2) will rapidly retreat and disappear in future years, melt water will decrease, ultimately resulting in a long term water shortage. Glacial lakes exhibited rapid expansion due to accelerating glacier retreat during 1980–2005, increasing the possibility of glacial lake outburst floods.  相似文献   
293.
The Målingen structure is an approximately 700 m wide, rimmed, sediment‐filled, circular depression in Precambrian crystalline basement approximately 16.2 km from the concentric, marine‐target Lockne crater (inner, basement crater diameter approximately 7.5 km, total diameter in sedimentary strata approximately 13.5 km). We present here results from geologic mapping, a 148.8 m deep core drilling from the center of the structure, detailed biostratigraphic dating of the structure's formation and its age correlation with Lockne, chemostratigraphy of the sedimentary infill, and indication for shock metamorphism in quartz from breccias below the crater infill. The drill core reveals, from bottom to the top, approximately 33 m of basement rocks with increased fracturing upward, approximately 10 m of polymict crystalline breccia with shock features, approximately 97 m of slumped Cambrian mudstone, approximately 4.7 m of a normally graded, polymict sedimentary breccia that in its uppermost part grades into sandstone and siltstone (cf. resurge deposits), and approximately 1.6 m of secular sediments. The combined data set shows that the Målingen structure formed in conjunction with the Lockne crater in the same marine setting. The shape and depth of the basement crater and the cored sequence of crystalline breccias with shocked quartz, slumped sediments, and resurge deposits support an impact origin. The stratigraphic and geographic relationship with Lockne suggests the Lockne and Målingen craters to be the first described doublet impact structure by a binary asteroid into a marine‐target setting.  相似文献   
294.
Silicon tetrafluoride (SiF4) is observed in terrestrial volcanic gases and is predicted to be the major F-bearing species in low-temperature volcanic gases on Io [Schaefer, L., Fegley Jr., B., 2005b. Alkali and halogen chemistry in volcanic gases on Io. Icarus 173, 454-468]. SiF4 gas is also a potential indicator of silica-rich crust on Io. We used F/S ratios in terrestrial and extraterrestrial basalts, and gas/lava enrichment factors for F and S measured at terrestrial volcanoes to calculate equilibrium SiF4/SO2 ratios in volcanic gases on Io. We conclude that SiF4 can be produced at levels comparable to the observed NaCl/SO2 gas ratio. We also considered potential loss processes for SiF4 in volcanic plumes and in Io's atmosphere including ion-molecule reactions, electron chemistry, photochemistry, reactions with the major atmospheric constituents, and condensation. Photochemical destruction (tchem ∼266 days) and/or condensation as Na2SiF6 (s) appear to be the major sinks for SiF4. We recommend searching for SiF4 with infrared spectroscopy using its 9.7 μm band as done on Earth.  相似文献   
295.
296.
We present the basic features and preliminary results of the interface between our spectrophotometric model GRASIL (which calculates galactic SEDs from the UV to the submm with a detailed computation of dust extinction and thermal reemission) with the semi-analytical galaxy formation model GALFORM (which computes galaxy formation and evolution in the hierarchical scenario, providing the star formation history as an input to our model). With these two models we are able to synthesize simulated samples of a few thousand galaxies for statistical studies of galaxy properties to investigate galaxy formation and evolution. There is good agreement with the available SED and luminosity function data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
297.
We present inner-coma dust imaging of Comet Hyakutake (1996 B2) obtained on 11 consecutive nights in late March 1996, an interval including a major outburst and the comet’s closest approach to Earth. The evolution of the outburst morphology is followed, along with the motion along the tail of several outburst fragments. Two spiral dust jets—a primary jet, along with a much weaker secondary jet—are visible throughout the interval and are produced by two source regions on a rotating nucleus. These are examined as a function of rotational phase and viewing geometry, with their appearance changing from a nearly face-on view on March 18 to side-on by March 28. The dust outflow velocity as a function of distance from the nucleus is derived, with the dust continuing to accelerate to a distance of 4000 km or more and reaching an average outflow velocity of 0.38 km s−1 between 3000 and 8000 km. We present details of our Monte Carlo modeling of the jets and our methodology of fitting the model to the images. The modeling yields the pole orientation of the nucleus, with an obliquity of approximately 108°, corresponding to an RA of 13h41m and a Dec of −1.1°. For an assumed spherical nucleus, the primary active region is centered at approximately −66° latitude, has a radius of about 56°, and therefore covers about 22% of the surface. The source of the secondary jet is at a latitude of −28°, has a radius of about 16°, and is located at a longitude nearly 180° away from the primary source. Estimated uncertainties for the pole orientation and the source locations and sizes are each about 3°. This solution for the nucleus orientation and source locations explains the strong asymmetry in measured production rates before and after perihelion in radio observations (Biver et al., 1999, Astron. J. 118, 1850-1872). The modeling also tightly constrains the sidereal rotation period as 0.2618 ± 0.0001 day, completely consistent with the expected +0.0003 day difference from the observed solar rotation period of 0.2614 ± 0.0004 day determined by Schleicher and Osip (2002, Icarus 159, 210-233), given the pole orientation and position of the comet in its orbit.  相似文献   
298.
A new exact method for line radiative transfer   总被引:1,自引:0,他引:1  
We present a new method, the coupled escape probability (CEP), for exact calculation of line emission from multi-level systems, solving only algebraic equations for the level populations. The CEP formulation of the classical two-level problem is a set of linear equations , and we uncover an exact analytic expression for the emission from two-level optically thick sources that holds as long as they are in the 'effectively thin' regime. In a comparative study of a number of standard problems, the CEP method outperformed the leading line transfer methods by substantial margins.
The algebraic equations employed by our new method are already incorporated in numerous codes based on the escape probability approximation. All that is required for an exact solution with these existing codes is to augment the expression for the escape probability with simple zone-coupling terms. As an application, we find that standard escape probability calculations generally produce the correct cooling emission by the C  ii 158-μm line but not by the 3P lines of O  i .  相似文献   
299.
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号