首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6012篇
  免费   608篇
  国内免费   168篇
测绘学   248篇
大气科学   642篇
地球物理   2205篇
地质学   2400篇
海洋学   367篇
天文学   428篇
综合类   191篇
自然地理   307篇
  2024年   5篇
  2023年   10篇
  2022年   13篇
  2021年   39篇
  2020年   38篇
  2019年   44篇
  2018年   463篇
  2017年   409篇
  2016年   295篇
  2015年   187篇
  2014年   158篇
  2013年   162篇
  2012年   695篇
  2011年   477篇
  2010年   172篇
  2009年   176篇
  2008年   156篇
  2007年   148篇
  2006年   153篇
  2005年   857篇
  2004年   902篇
  2003年   672篇
  2002年   196篇
  2001年   85篇
  2000年   60篇
  1999年   25篇
  1998年   14篇
  1997年   28篇
  1996年   20篇
  1995年   6篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   9篇
  1990年   13篇
  1989年   8篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1976年   3篇
  1975年   5篇
  1973年   3篇
  1965年   3篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
排序方式: 共有6788条查询结果,搜索用时 31 毫秒
81.
82.
83.
We present 39Ar–40Ar dating of phengite, muscovite and paragonite from a set of mafic and metasedimentary rocks sampled from the high-pressure (HP) metaophiolites of the Voltri Group (Western Alps) and from clasts in the basal layer conglomerates from the Tertiary molasse which overlie the high-pressure basement. The white mica-bearing rocks display peak eclogitic and blueschist-facies parageneses, locally showing complex greenschist-facies replacement textures. The internal discordance of age spectra is proportional to the chemical complexity of the micas. High-Si phengites from eclogite clasts record a 39Ar–40Ar age of ca. 49 Ma for the eclogite stage and ca. 43 Ma for the blueschist retrogression; phengites from a blueschist basement sample yield an age of ca. 40 Ma; low-Si muscovite from a metasediment dates the formation of the greenschist paragenesis at ca. 33 Ma. Our data indicate that the analyzed samples reached high-pressure conditions at different times over a time-span of c.a. 10 Ma. Subduction was continuing during exhumation and blueschist retrograde re-equilibration of higher-pressure, eclogite-facies rocks. This process kept the isotherms depressed, allowing the older HP-rocks to escape thermal re-equilibration. Our results, added to literature data, fit a tectonic model of a subduction–exhumation cycle, with different tectonic slices subducted at different times from Early Eocene until the Eocene–Oligocene boundary.  相似文献   
84.
Although many bioessential metals are scarce in natural water and rock systems, microbial secretion of high-affinity ligands for metal extraction from solid phases has only been documented for Fe. However, we have discovered that Mo is extracted from a silicate by a high-affinity ligand (a possible “molybdophore”) secreted by an N2-fixing soil bacterium. The putative molybdophore, aminochelin, is secreted as a siderophore under Fe-depleted conditions, but is also secreted under Fe-sufficient, Mo-depleted conditions. Presumably, molybdophore production facilitates uptake of Mo for use in Mo enzymes. In contrast, an Fe-requiring soil bacterium without a special Mo requirement only enhances the release of Fe from the silicate. Fractionation of Mo stable isotopes during uptake to cells may provide a “fingerprint” for the importance of chelating ligands in such systems. Many such metal-specific ligands secreted by prokaryotes for extraction of bioessential metals, their effects on Earth materials, and their possible utility in the recovery of economic metals remain to be discovered.  相似文献   
85.
The phase relations of quaternary systems are generally represented by projections onto ternary compositional planes. Such projections often obscure relationships that would only be evident in a three-dimensional tetrahedral plot. The tetrahedral plot requires that compositions of the minerals and melts be transformed into Cartesian coordinates. It is shown here how this transformation is carried out. The application is demonstrated by tetrahedral plots of experimental melt compositions of partially molten lherzolite. Furthermore, the plot can be used to evaluate whether or not a particular basaltic composition represents a primary melt. The methods are applicable to any four-component system.  相似文献   
86.
The origin of oceanic islands has been the subject of much speculation, starting with Darwin almost two centuries ago. Two classes of oceanic islands can be identified: ‘volcanic islands’, which form due to excess volcanism caused by melting anomalies in the suboceanic mantle, and ‘tectonic islands’, which form due to transpressive and/or transtensional tectonics of blocks of oceanic lithosphere along transform faults. Modern and sunken tectonic islands from the Atlantic Ocean and Indian Ocean and the Caribbean Sea and Red Sea expose mantle and lower‐crust lithologies and display an elongated narrow morphology; in contrast, volcanic islands expose basalts and have near‐circular morphology. Both are often capped by carbonate platforms. The life cycle of tectonic islands tends to be more complex than that of most volcanic islands; their elongated narrow morphology, together with their tectonic instability and high seismicity, affect the architecture of the carbonate platforms capping them, limiting coral reef development and favouring rhodalgal–foramol biota associations.  相似文献   
87.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   
88.
Exceptional rainfall events cause significant losses of soil, although few studies have addressed the validation of model predictions at field scale during severe erosive episodes. In this study, we evaluate the predictive ability of the enhanced Soil Erosion and Redistribution Tool (SERT‐2014) model for mapping and quantifying soil erosion during the exceptional rainfall event (~235 mm) that affected the Central Spanish Pyrenees in October 2012. The capacity of the simulation model is evaluated in a fallow cereal field (1.9 ha) at a high spatial scale (1 × 1 m). Validation was performed with field‐quantified rates of soil loss in the rills and ephemeral gullies and also with a detailed map of soil redistribution. The SERT‐2014 model was run for the six rainfall sub‐events that made up the exceptional event, simulating the different hydrological responses of soils with maximum runoff depths ranging between 40 and 1017 mm. Predicted average and maximum soil erosion was 11 and 117 Mg ha?1 event?1, respectively. Total soil loss and sediment yield to the La Reina gully amounted to 16.3 and 9.0 Mg event?1. These rates are in agreement with field estimations of soil loss of 20.0 Mg event?1. Most soil loss (86%) occurred during the first sub‐event. Although soil accumulation was overestimated in the first sub‐event because of the large amount of detached soil, the enhanced SERT‐2014 model successfully predicted the different spatial patterns and values of soil redistribution for each sub‐event. Further research should focus on stream transport capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
89.
Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration‐excess (where precipitation rate exceeds infiltration capacity) or saturation‐excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one‐dimensional model that distinguishes between infiltration‐excess overland flow (IEOF) and saturation‐excess overland flow (SEOF) using Green–Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low‐ and high‐intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth‐weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high‐intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号