首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   960篇
  免费   32篇
  国内免费   13篇
测绘学   79篇
大气科学   95篇
地球物理   188篇
地质学   319篇
海洋学   117篇
天文学   134篇
综合类   7篇
自然地理   66篇
  2023年   5篇
  2022年   4篇
  2021年   9篇
  2020年   14篇
  2019年   9篇
  2018年   32篇
  2017年   35篇
  2016年   35篇
  2015年   28篇
  2014年   36篇
  2013年   53篇
  2012年   32篇
  2011年   51篇
  2010年   39篇
  2009年   76篇
  2008年   37篇
  2007年   53篇
  2006年   59篇
  2005年   28篇
  2004年   29篇
  2003年   37篇
  2002年   32篇
  2001年   30篇
  2000年   21篇
  1999年   20篇
  1998年   15篇
  1997年   20篇
  1996年   11篇
  1995年   12篇
  1994年   11篇
  1993年   11篇
  1992年   12篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   10篇
  1987年   14篇
  1986年   3篇
  1985年   10篇
  1984年   8篇
  1982年   5篇
  1981年   3篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1973年   4篇
  1971年   3篇
  1969年   2篇
排序方式: 共有1005条查询结果,搜索用时 500 毫秒
161.
162.
163.
The dependence of iron and europium partitioning between plagioclase and melt on oxygen fugacity was studied in the system SiO2(Qz)—NaAlSi3O8(Ab)—CaAl2Si2O8(An)—H2O. Experiments were performed at 500 MPa and 850 °C/750 °C under water saturated conditions. The oxygen fugacity was varied in the log f O2-range from −7.27 to −15.78. To work at the most reducing conditions the classical double-capsule technique was modified. The sample and a C—O—H bearing sensor capsule were placed next to each other within a BN jacket to minimise loss of hydrogen to the vessel atmosphere. By this setup redox conditions slightly more reducing than the FeO—Fe3O4 buffer could be maintained even in 96 h runs. Raman spectra showed that the BN was modified by reaction with hydrogen resulting in a low hydrogen permeability. The partition coefficients determined for Eu at 850 °C and 500 MPa vary from 0.095 at conditions of the Cu—Cu2O buffer to 1.81 at the most reducing conditions (C—O—H sensor). In the same f O2 interval the partition coefficient for Fe varies from 0.55 at oxidising conditions to 0.08 at the most reducing conditions. The partitioning of Sm, which was added as a reference for a trivalent REE, does not vary with the oxygen fugacity, yielding an average value for D = 0.07. Lowering the temperature to 750 °C for a given f O2 decreases the partition coefficient of Eu and increases that of Fe. Comparison with published data at 1 atm and at higher temperatures shows that both temperature and composition of the melt have strong effects on the partitioning behaviour. As the change of the partition coefficients in the geologically relevant f O2 range is quite strong, element partitioning of Eu and Fe might be used to estimate redox conditions for the genesis of igneous rocks. Furthermore, by modelling the partitioning data it is possible to extract information about the redox state of the melt. Resulting ferric-ferrous ratios show significant differences from those predicted by empirical models. Received: 14 October 1998 / Received: 5 March 1999  相似文献   
164.
SKB (Svensk Kärnbränslehantering AB) is responsible for all handling, transport and storage of the nuclear wastes outside the Swedish nuclear power stations. According to Swedish law, SKB is responsible for an R&D-programme needed to take care of the radwastes. The programme comprises, among others, a general supportive geo-scientific R&D and the Äspö Hard Rock Laboratory (HRL) for more in-situ specific tasks.

Sweden is geologically located in the Fennoscandian shield which is dominated by gneisses and granitoids of Precambrian age. The Swedish reference repository concept thus considers an excavated vault at ca. 500 m depth in crystalline rocks. In this concept (KBS-3), copper canisters with high level waste will be emplaced in deposition holes from a system of tunnels. Blocks of highly compacted swelling bentonite clay are placed in the holes leaving ample space for the canisters. At the final closure of the repository, the galleries are backfilled with a mixture of sand and bentonite. This repository design aims to make the disposal system as redundant as possible. Although the KBS-3 concept is the reference concept, alternative concepts and/or repository lay-outs are also studied. The main alternative, currently under development at SKB, is disposal in boreholes with depths of 4–5 km. The geoscientific research will to a great extent be guided by the demands posed by the performance and safety assessments, as well as the constuctability issues. Some main functions of the geological barrier are fundamental for the long-term safety of a repository. These are: bedrock mechanical stability, a chemically stable environment as well as a slow and stable groundwater flux. The main time-table for the final disposal of long-lived radioactive waste in Sweden foresees the final selection of the disposal system and site during the beginning of next decade.  相似文献   

165.
The observation of extreme waves at FINO 1 during storm Britta on the 1st November 2006 has initiated a series of research studies regarding the mechanisms behind. The roles of stability and the presence of the open cell structures have been previously investigated but not conclusive. To improve our understanding of these processes, which are essential for a good forecast of similarly important events offshore, this study revisits the development of storm Britta using an atmospheric and wave coupled modeling system, wind and wave measurements from ten stations across the North Sea, cloud images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height (H s ) for open sea. It was also demonstrated that the impact of the open cells has negligible contribution to the development of extreme H s observed at FINO 1. At the same time, stability alone is not sufficient in explaining the development of extreme H s . The controlling conditions for the development of Britta extreme H s observed at FINO 1 are the persistent strong winds and a long and undisturbed fetch over a long period.  相似文献   
166.
Talus slopes are common places for debris storage in high-mountain environments and form an important step in the alpine sediment cascade. To understand slope instabilities and sediment transfers, detailed investigations of talus slope geomorphology are needed. Therefore, this study presents a detailed analysis of a talus slope on Col du Sanetsch (Swiss Alps), which is investigated at multiple time scales using high-resolution topographic (HRT) surveys and historical aerial photographs. HRT surveys were collected during three consecutive summers (2017–2019), using uncrewed aerial vehicle (UAV) and terrestrial laser scanning (TLS) measurements. To date, very few studies exist that use HRT methods on talus slopes, especially to the extent of our study area (2 km2). Data acquisition from ground control and in situ field observations is challenging on a talus slope due to the steep terrain (30–37°) and high surface roughness. This results in a poor spatial distribution of ground control points (GCPs), causing unwanted deformation of up to 2 m in the gathered UAV-derived HRT data. The co-alignment of UAV imagery from different survey dates improved this deformation significantly, as validated by the TLS data. Sediment transfer is dominated by small-scale but widespread snow push processes. Pre-existing debris flow channels are prone to erosion and redeposition of material within the channel. A debris flow event of high magnitude occurred in the summer of 2019, as a result of several convective thunderstorms. While low-magnitude (<5,000 m3) debris flow events are frequent throughout the historical record with a return period of 10–20 years, this 2019 event exceeded all historical debris flow events since 1946 in both extent and volume. Future climate predictions show an increase of such intense precipitation events in the region, potentially altering the frequency of debris flows in the study area and changing the dominant geomorphic process which are active on such talus slopes. © 2020 John Wiley & Sons, Ltd.  相似文献   
167.
Given the continuous decline in global runoff data availability over the past decades, alternative approaches for runoff determination are gaining importance. When aiming for global scale runoff at a sufficient temporal resolution and with homogeneous accuracy, the choice to use spaceborne sensors is only a logical step. In this respect, we take water storage changes from Gravity Recovery And Climate Explorer (grace) results and water level measurements from satellite altimetry, and present a comprehensive assessment of five different approaches for river runoff estimation: hydrological balance equation, hydro-meteorological balance equation, satellite altimetry with quantile function-based stage–discharge relationships, a rudimentary instantaneous runoff–precipitation relationship, and a runoff–storage relationship that takes time lag into account. As a common property, these approaches do not rely on hydrological modeling; they are either purely data driven or make additional use of atmospheric reanalyses. Further, these methods, except runoff–precipitation ratio, use geodetic observables as one of their inputs and, therefore, they are termed hydro-geodetic approaches. The runoff prediction skill of these approaches is validated against in situ runoff and compared to hydrological model predictions. Our results show that catchment-specific methods (altimetry and runoff–storage relationship) clearly outperform the global methods (hydrological and hydro-meteorological approaches) in the six study regions we considered. The global methods have the potential to provide runoff over all landmasses, which implies gauged and ungauged basins alike, but are still limited due to inconsistencies in the global hydrological and hydro-meteorological datasets that they use.  相似文献   
168.
169.
This paper discusses tidal effects on an observation scheme to determine a point at the bottom of the sea by combining GPS and Sonar observations. For the purpose, three kinds of Earth tides are introduced (i.e., the crust tide, the equipotential surface point (ocean depth) tide, and the geoid tide). The corresponding mathematical expressions are derived to demonstrate the tidal effects on GPS and Sonar observations. The relations between the Earth tides are also discussed. Theoretical results imply a very interesting conclusion, namely that, for a local area, the static position of a point at the bottom of sea can be obtained by the dynamic observations without any tidal correction. Actually, the tidal effects cancel each other in the mentioned observation scheme. It therefore indicates that the observation scheme is free of tidal effects. Furthermore, we learned that the divergence caused by any error source on ocean surface is canceled and does not affect the final results. Therefore, to determine the position of a point at the bottom of sea, we need not consider any tidal effects.  相似文献   
170.
The Jan Mayen microcontinent was as a result of two major North Atlantic evolutionary cornerstones—the separation of Greenland from Norway (~54 Ma), accompanied by voluminous volcanic activity, and the jump of spreading from the Aegir to the Kolbeinsey ridge (~33 Ma), which resulted in the separation of the microcontinent itself from Eastern Greenland (~24 Ma). The resulting eastern and western sides of the Jan Mayen microcontinent are respectively volcanic and non-volcanic rifted margins. Until now the northern boundary of the microcontinent was not precisely known. In order to locate this boundary, two combined refraction and reflection seismic profiles were acquired in 2006: one trending S–N and consisting of two separate segments south and north of the island of Jan Mayen respectively, and the second one trending SW–NE east of the island. Crustal P-wave velocity models were derived and constrained using gravity data collected during the same expedition. North of the West Jan Mayen Fracture Zone (WJMFZ) the models show oceanic crust that thickens from west to east. This thickening is explained by an increase in volcanic activity expressed as a bathymetric high and most likely related to the proximity of the Mohn ridge. East of the island and south of the WJMFZ, oceanic Layers 2 and 3 have normal seismic velocities but above normal average crustal thickness (~11 km). The similarity of the crustal thickness and seismic velocities to those observed on the conjugate M?re margin confirm the volcanic origin of the eastern side of the microcontinent. Thick continental crust is observed in the southern parts of both profiles. The northern boundary of the microcontinent is a continuation of the northern lineament of the East Jan Mayen Fracture Zone. It is thus located farther north than previously assumed. The crust in the middle parts of both models, around Jan Mayen island, is more enigmatic as the data suggest two possible interpretations—Icelandic type of oceanic crust or thinned and heavily intruded continental crust. We prefer the first interpretation but the latter cannot be completely ruled out. We infer that the volcanism on Jan Mayen is related to the Icelandic plume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号