Previous research by our group (e.g., [Chem. Geol. 132 (1996) 25; Geochim. Cosmochim. Acta 64 (2000) 1363]) has shown that an aerobic Pseudomonas mendocina bacterium enhances Fe(hydr)oxide dissolution in order to obtain Fe under Fe-limited conditions. The P. mendocina is incapable of utilizing Fe as a terminal electron acceptor and requires several orders of magnitude lower Fe concentrations than do dissimilatory Fe reducing bacteria. The research reported here compared the effects of the P. mendocina on dissolution of well and poorly ordered Clay Minerals Society Source Clay kaolinites KGa-1b and KGa-2, respectively, under Fe-limited conditions. KGa-1b and KGa-2 contain 0.04 and 0.94 bulk wt.% Fe, respectively, and their surface Fe/Si atomic RATIOS=0.008 and 0.012. Following strong cleaning of the kaolinites in 5.8 M HCl at 85 °C, the surface Fe/Si atomic ratios decreased to 0.004 and 0.008, respectively. Both kaolinites also developed a Si-enriched surface precipitate upon strong cleaning.
Because the P. mendocina take up Fe, we could not measure Fe release from the kaolinite directly, but rather had to monitor it indirectly by comparing microbial populations sizes under Fe-limited growth conditions. We found that microbial growth on uncleaned, weakly cleaned, and strongly cleaned kaolinites increased with the amount of Fe readily available to organic ligands as estimated by dissolution in 0.001 M oxalate (pH 3). This suggests that it is the amount of readily accessible Fe that controls Fe acquisition and hence microbial growth. The trend is based on only a relatively small range of kaolinite Fe contents, and the research thus needs to be expanded to include kaolinites with a broader range of bulk and surface Fe concentrations.
Significant enhancement of Al release was observed in the presence of the bacteria, along with generally some enhancement of Si release. This enhancement of kaolinite dissolution could be related to an observed pH increase from 7–8 to 9 in the presence of the bacteria and/or to production of Al chelating agents. The P. mendocina produce a variety of organic exudates, including siderophores [Chem. Geol. 132 (1996) 25; Geomicrobiology (2001b)], and further studies into the effects of the siderophores on Al complexation and on kaolinite dissolution are ongoing. 相似文献
Sixteen kimberlite boulders were collected from three sites on the Munro and Misema River Eskers in the Kirkland Lake kimberlite field and one site on the Sharp Lake esker in the Lake Timiskaming kimberlite field. The boulders were processed for heavy-mineral concentrates from which grains of Mg-ilmenite, chromite, garnet, clinopyroxene and olivine were picked, counted and analyzed by electron microprobe. Based on relative abundances and composition of these mineral phases, the boulders could be assigned to six mineralogically different groups, five for the Kirkland Lake area and one for the Lake Timiskaming area. Their indicator mineral composition and abundances are compared to existing data for known kimberlites in both the Kirkland Lake and Lake Timiskaming areas. Six boulders from the Munro Esker form a compositionally homogeneous group (I) in which the Mg-ilmenite population is very similar to that of the A1 kimberlite, located 7–12 km N (up-ice), directly adjacent to the Munro esker in the Kirkland Lake kimberlite field. U–Pb perovskite ages of three of the group I boulders overlap with that of the A1 kimberlite. Three other boulders recovered from the same localities in the Munro Esker also show some broad similarities in Mg-ilmenite composition and age to the A1 kimberlite. However, they are sufficiently different in mineral abundances and composition from each other and from the A1 kimberlite to assign them to different groups (II–IV). Their sources could be different phases of the same kimberlite or—more likely—three different, hitherto unknown kimberlites up-ice of the sample localities along the Munro Esker in the Kirkland Lake kimberlite field. A single boulder from the Misema River esker, Kirkland Lake, has mineral compositions that do not match any of the known kimberlites from the Kirkland Lake field. This suggests another unknown kimberlite exists in the area up-ice of the Larder Lake pit along the Misema River esker. Six boulders from the Sharp Lake esker, within the Lake Timiskaming field, form a homogeneous group with distinct mineral compositions unmatched by any of the known kimberlites in the Lake Timiskaming field. U–Pb perovskite age determinations on two of these boulders support this notion. These boulders are likely derived from an unknown kimberlite source up-ice from the Seed kimberlite, 4 km NW of the Sharp Lake pit, since indicator minerals with identical compositions to those of the Sharp Lake boulders have been found in till samples collected down-ice from Seed. Based on abundance and composition of indicator minerals, most importantly Mg-ilmenite, and supported by U–Pb age dating of perovskite, we conclude that the sources of 10 of the 16 boulders must be several hitherto unknown kimberlite bodies in the Kirkland Lake and Lake Timiskaming kimberlite fields. 相似文献
Glacial Lake Missoula, a source of Channeled Scabland flood waters, inundated valleys of northwest Montana to altitudes of ∼ 1265 m and to depths of >600 m, as evidenced by shorelines and silty lacustrine deposits. This study describes previously unrecognized catastrophic lake-drainage deposits that lie stratigraphically beneath the glacial-lake silts. The unconsolidated gravelly flood alluvium contains imbricated boulder-sized clasts, cross-stratified gravel with slip-face heights of 2-> 35 m, and 70- to 100-m-high gravel bars which all indicate a high-energy, high-volume alluvial environment. Gravel bars and high scablands were formed by catastrophic draining of one or possibly more early, high lake stands (1200-1265 m). Most glacial-lake silt, such as the Ninemile section, was deposited stratigraphically above the earlier deposits, represents a lower lake stand(s) (1050-1150 m), and was not deposited in lake(s) responsible for the highest discharge events. The glaciolacustrine silt-covered benches are incised by relict networks of valleys formed during the drainage of the last glacial lake. Significant erosion associated with the last lake draining was confined to the inner Clark Fork River canyon. 相似文献
1 IntroductionSalinization is one of the major problems in arid and semi-arid regions in relation to land use and in particular to agricultural production[1]. Excessive salinity leads to toxicity in crops and reduction of the availability of water to crops, by reducing the osmotic potential of the soil solution[2]. Movement of soil water induces solute transport, and solutes are transferred towards the ground surface by the upward soil-water movement caused by evaporation, resulting in an accu… 相似文献
A general method is presented for analyzing how climatic conditions affect plant disease severity. An example of its application is given for the analysis of stripe rust (caused by Puccinia striiformis) data on winter wheat cultivar Gaines and climatic data collected at Pullman, WA. for 1968–1986. A computer program WINDOW was written to identify the climatic factors most highly correlated with disease. This program is designed to utilize meteorological data for an entire growing season of a crop as well as to include climatic conditions preceding planting. This program uses an iterative process to examine variable-length segments of meteorological data in a more exhaustive analysis than previously possible. Climatic factors considered include: mean maximum, minimum, and average temperature; total and frequency of precipitation; consecutive days with and without precipitation; accumulation of negative and positive degree days; and number of days with extreme temperature events. Variables that were highly correlated with disease were the basis for regression models that were developed to predict disease severity index for each of the three cultivars. Two- and three-variable models explained, respectively, 75 and 76% of the variation in disease from year to year. Predictions (which could be made early enough in the growing season to allow application of chemical control) were evaluated on the basis of whether years with severe disease were accurately predicted. Models were validated using Allen's PRESS statistic and by application to new data. The method is potentially applicable to studies of how climatic conditions affect the populations or productivity of other types of organisms.This research was supported by a National Science Foundation Grant (ATM 85-03115), Climate Dynamics Program, Division of Atmospheric Sciences. 相似文献
While most aspects of subduction have been extensively studied, the process of subduction initiation lacks an observational foundation. The Macquarie Ridge complex (MRC) forms the Pacific-Australia plate boundary between New Zealand to the north and the Pacific-Australia-Antarctica triple junction to the south. The MRC consists of alternating troughs and rises and is characterized by a transitional tectonic environment in which subduction initiation presently occurs. There is a high seismicity level with 15 large earthquakes (M>7) in this century. Our seismological investigation is centered on the largest event since 1943: the 25 MAY 1981 earthquake. Love, Rayleigh, andP waves are inverted to find: a faulting geometry of right-lateral strike-slip along the local trend of the Macquarie Ridge (N30°E); a seismic moment of 5×1027 dyn cm (Mw=7.7) a double event rupture process with a fault length of less than 100km to the southwest of the epicenter and a fault depth of less than 20km. Three smaller thrust earthquakes occurred previous to the 1981 event along the 1981 rupture zone; their shallow-dipping thrust planes are virtually adjacent to the 1981 vertical fault plane. Oblique convergence in this region is thus accommodated by a dual rupture mode of several small thrust events and a large strike-slip event. Our study of other large MRC earthquakes, plus those of other investigators, produces focal mechanisms for 15 earthquakes distributed along the entire MRC; thrust and right-lateral strike-slip events are scattered throughout the MRC. Thus, all of the MRC is characterized by oblique convergence and the dual rupture mode. The true best-fit rotation pole for the Pacific-Australia motion is close to the Minster & Jordan RM2 pole for the Pacific-India motion. Southward migration of the rotation pole has caused the recent transition to oblique convergence in the northern MRC. We propose a subduction initiation process that is akin to crack propagation; the 1981 earthquake rupture area is identified as the crack-tip region that separates a disconnected mosaic of small thrust faults to the south from a horizontally continuous thrust interface to the north along the Puysegur trench. A different mechanism of subduction initiation occurs in the southernmost Hjort trench region at the triple junction. newly created oceanic lithosphere has been subducted just to the north of the triple junction. The entire MRC is a soft plate boundary that must accommodate the plate motion mismatch between two major spreading centers (Antarctica-Australia and Pacific-Antarctica). The persistence of spreading motion at the two major spreading centers and the consequent evolution of the three-plate system cause the present-day oblique convergence and subduction initiation in the Macquarie Ridge complex. 相似文献
We used an extensive temperature and salinity data set to develop a statistically meaningful way of estimating mean temperature and salinity from discrete measurements in the mouth of Chesapeake Bay. From April 1992 to December 1998, the Center for Coastal Physical Oceanography completed 73 monthly hydrographic sections at high spring tide across the mouth of Chesapeake Bay. Time series of area weighted mean bay mouth temperature (MBMT) and salinity (MBMS) were calculated. We found that at any time the temperature at any location in the section correlated with the MBMT with a r2 of 0.95 or better. A similar analysis for salinity showed that the best correlation was about 0.9 with many locations below 0.8. A correlation between MBMT and temperature at a nearby tide station indicated it was possible to estimate MBMT from the temperature at the tide station to ±0.74°C (90% confidence interval). Salinity was not measured at the tide station, but the correlation at a location in the section similar to the tide station indicates that MBMS can be estimated with an error of ±1.5 (90% confidence interval). 相似文献
The former Homestake mine in South Dakota (USA) cuts fractured metamorphic rock over a region several km2 in plan, and plunges to the SE to a depth of 2.4 km. Numerical simulations of the development and dewatering of the mine workings are based on idealizing the mine-workings system as two overlapping continua, one representing the open drifts and the other representing the host rock with hydrologic properties that vary with effective stress. Equating macroscopic hydrologic properties with characteristics of deformable fractures allows the number of parameters to be reduced, and it provides a physically based justification for changes in properties with depth. The simulations explain important observations, including the co-existence of shallow and deep flow systems, the total dewatering flow rate, the spatial distribution of in-flow, and the magnitude of porosity in the mine workings. The analysis indicates that a deep flow system induced by ~125 years of mining is contained within a surface-truncated ellipsoid roughly 8 km by 4 km in plan view and 5.5 km deep with its long-axis aligned to the strike of the workings. Groundwater flow into the southern side of the workings is characterized by short travel times from the ground surface, whereas flow into the northern side and at depth consists of old water removed from storage. 相似文献
Turbulent fluxes obtained using the conventional eddy covariance approach result in erratic results with large time fluctuations
in extremely stable conditions. This can limit efforts to estimate components of the nocturnal energy budget and respiratory
CO2 fluxes. Well-organized fluxes that show a clear dependence on turbulent intensity were obtained when multiresolution decomposition
was used to estimate turbulent exchanges. CO2, heat and water vapour fluxes were observed at a site in the eastern Amazon basin that had been cleared for agricultural
purposes. Temporal scales of the carbon transfer were determined and shown to be similar to those of latent heat, but as much
as three times larger than those of sensible heat. CO2 eddy diffusivities at the temporal scales on which most of the vertical CO2 exchange occurs are shown to be 50 times larger than the eddy diffusivity for heat. A process associated with the vertical
scale of the scalar accumulation layer is suggested to explain these different scales and turbulent diffusivities of carbon
and sensible heat transfer. For an appreciable range of turbulence intensities, the observed vertical turbulent carbon exchange
is insufficient to account for the locally respired CO2 estimated independently. Evidence that shallow drainage currents may account for this is given. 相似文献