首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   13篇
  国内免费   6篇
测绘学   6篇
大气科学   35篇
地球物理   102篇
地质学   159篇
海洋学   47篇
天文学   92篇
综合类   1篇
自然地理   27篇
  2022年   4篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   10篇
  2016年   6篇
  2015年   7篇
  2014年   6篇
  2013年   18篇
  2012年   17篇
  2011年   23篇
  2010年   17篇
  2009年   25篇
  2008年   18篇
  2007年   22篇
  2006年   11篇
  2005年   13篇
  2004年   22篇
  2003年   20篇
  2002年   9篇
  2001年   12篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   11篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   11篇
  1990年   5篇
  1989年   4篇
  1988年   7篇
  1987年   8篇
  1986年   9篇
  1985年   12篇
  1984年   8篇
  1983年   7篇
  1982年   7篇
  1981年   8篇
  1980年   6篇
  1979年   4篇
  1978年   7篇
  1977年   7篇
  1976年   4篇
  1975年   6篇
  1973年   8篇
  1971年   2篇
排序方式: 共有469条查询结果,搜索用时 15 毫秒
21.
An attempt is made in this paper to complement existing analyses of voluntary groups by outlining some additional explicitly spatial dimensions which, it is argued, can be useful in examining those organizations with a land use or environmental focus. The distinction is drawn between groups which have direct spatial links and those with indirect spatial links; the hierarchical subdivision of space is considered; the role of scale and its relation to perception and desired use of areas is addressed; and the importance of considering the resolution scale of land use and environmental conflicts noted.  相似文献   
22.
Seismic coupling and uncoupling at subduction zones   总被引:1,自引:0,他引:1  
Seismic coupling has been used as a qualitative measure of the “interaction” between the two plates at subduction zones. Kanamori (1971) introduced seismic coupling after noting that the characteristic size of earthquakes varies systematically for the northern Pacific subduction zones. A quantitative global comparison of many subduction zones reveals a strong correlation of earthquake size with two other variables: age of the subducting lithosphere and convergence rate. The largest earthquakes occur in zones with young lithosphere and fast convergence rates, while zones with old lithosphere and slow rates are relatively aseismic for large earthquakes. Results from a study of the rupture process of three great earthquakes indicate that maximum earthquake size is directly related to the asperity distribution on the fault plane (asperities are strong regions that resist the motion between the two plates). The zones with the largest earthquakes have very large asperities, while the zones with smaller earthquakes have small scattered asperities. This observation can be translated into a simple model of seismic coupling, where the horizontal compressive stress between the two plates is proportional to the ratio of the summed asperity area to the total area of the contact surface. While the variation in asperity size is used to establish a connection between earthquake size and tectonic stress, it also implies that plate age and rate affect the asperity distribution. Plate age and rate can control asperity distribution directly by use of the horizontal compressive stress associated with the “preferred trajectory” (i.e. the vertical and horizontal velocities of subducting slabs are determined by the plate age and convergence velocity). Indirect influences are many, including oceanic plate topography and the amount of subducted sediments.All subduction zones are apparently uncoupled below a depth of about 40 km, and we propose that the basalt to eclogite phase change in the down-going oceanic crust may be largely responsible. This phase change should start at a depth of 30–35 km, and could at least partially uncouple the plates by superplastic deformation throughout the oceanic crust during the phase change.  相似文献   
23.
Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10−6 mol m−2 h−1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.  相似文献   
24.
High-pressure crystal structures and compressibilities have been determined by x-ray methods for MgAl2O4 spinel and its isomorph magnetite, Fe3O4. The measured bulk moduli, K, of spinel and magnetite (assuming K′=4) are 1.94±0.06 and 1.86±0.05 Mbar, respectively, in accord with previous ultrasonic determinations. The oxygen u parameter, the only variable atomic position coordinate in the spinel structure (Fd3m, Z=8), decreases with pressure in MgAl2O4, thus indicating that the magnesium tetrahedron is more compressible than the aluminum octahedron. In magnetite the u parameter is unchanged, and both tetrahedron and octahedron display the 1.9 Mbar bulk modulus characteristic of the entire crystal. This behavior contrasts with that of nickel silicate spinel (γ-Ni2SiO4), in which the u parameter increases with pressure because the silicon tetrahedron is relatively incompressible compared to the nickel octahedron.  相似文献   
25.
The temporal and spatial distributions of salinity, dissolved oxygen, suspended particulate material (SPM), and dissolved nutrients were determined during 1983 in the Choptank River, an estuarine tributary of Chesapeake Bay. During winter and spring freshets, the middle estuary was strongly stratified with changes in salinity of up to 5‰ occurring over 1 m depth intervals. Periodically, the lower estuary was stratified due to the intrusion of higher salinity water from the main channel of Chesapeake Bay. During summer this intrusion caused minimum oxygen and maximum NH4 + concentrations at the mouth of the Choptank River estuary. Highest concentrations of SPM, particulate carbon (PC), particulate nitrogen (PN), total nitrogen (TN), total phosphorous (TP) and dissolved inorganic nitrogen (DIN) occurred in the upper estuary during the early spring freshet. In contrast, minimum soluble reactive phosphate (SRP) concentrations were highest in the upper estuary in summer when freshwater discharge was low. In spring, PC:PN ratios were >13, indicating a strong influence by allochthonous plant detritus on PC and PN concentrations. However, high concentrations of PC and PN in fall coincided with maximum chlorophyll a concentrations and PC:PN ratios were <8, indicating in situ productivity controlled PC and PN levels. During late spring and summer, DIN concentrations decreased from >100 to <10 μg-at l?1, resulting mainly from the nonconservative behavior of NO3 ?, which dominated the DIN pool. Atomic ratios of both the inorganic and total forms of N and P exceeded 100 in spring, but by summer, ratios decreased to <5 and <15, respectively. The seasonal and spatial changes in both absolute concentrations and ratios of N and P reflect the strong influence of allochthonous inputs on nutrient distributions in spring, followed by the effects of internal processes in summer and fall.  相似文献   
26.
The Toodoggone district comprises Upper Triassic to Lower Jurassic Hazelton Group Toodoggone Formation volcanic and sedimentary rocks, which unconformably overlie submarine island-arc volcanic and sedimentary rocks of the Lower Permian Asitka Group and Middle Triassic Takla Group, some of which are intruded by Upper Triassic to Lower Jurassic plutons and dikes of the Black Lake suite. Although plutonism occurred episodically from ca. 218 to 191 Ma, the largest porphyry Cu–Au ± Mo systems formed from ca. 202 to 197 Ma, with minor mineralization occurring from ca. 197 to 194 Ma. Porphyry-style mineralization is hosted by small-volume (<1 km3), single-phase, porphyritic igneous stocks or dikes that have high-K calc-alkaline compositions and are comparable with volcanic-arc granites. The Fin porphyry Cu–Au–Mo deposit is anomalous in that it is 16 m.y. older than any other porphyry Cu–Au ± Mo occurrence in the district and has lower REEs. All porphyry systems are spatially restricted to exposed Asitka and Takla Group basement rocks, and rarely, the lowest member of the Hazelton Group (i.e., the ca. 201 Ma Duncan Member). The basement rocks to intrusions are best exposed in the southern half of the district, where high rates of erosion and uplift have resulted in their preferential exposure. In contrast, low- and high-sulfidation epithermal systems are more numerous in the northern half of the district, where the overlying Hazelton Group rocks dominate exposures. Cogenetic porphyry systems might also exist in the northern areas; however, if they are present, they are likely to be buried deeply beneath Hazelton Group rocks. High-sulfidation epithermal systems formed at ca. 201 to 182 Ma, whereas low-sulfidation systems were active at ca. 192 to 162 Ma. Amongst the studied epithermal systems, the Baker low-sulfidation epithermal deposit displays the strongest demonstrable genetic link with magmatic fluids; fluid inclusion studies demonstrate that its ore fluids were hot (>468°C), saline, and deposited metals at deep crustal depths (>2 km). Sulfur, C, O, and Pb isotope data confirm the involvement of a magmatic fluid, but also suggest that the ore fluid interacted with Asitka and Takla Group country rocks prior to metal deposition. In contrast, in the Shasta, Lawyers, and Griz-Sickle low-sulfidation epithermal systems, there is no clear association with magmatic fluids. Instead, their fluid inclusion data indicate the involvement of low-temperature (175 to 335°C), low-salinity (1 to 11 equiv. wt.% NaCl) fluids that deposited metals at shallow depths (<850 m). Their isotope (i.e., O, H, Pb) data suggest interaction between meteoric and/or metamorphic ore fluids with basement country rocks.  相似文献   
27.
28.
A material balance is constructed for excess 210Pb (relative to 226Ra) as a test of the retentivity of Long Island Sound for a reactive heavy metal. Excess 210Pb is supplied to Long Island Sound chiefly by direct atmospheric deposition [1 ± 0.2(dis·min?1)cm?2·yr?1]. Rivers supply less than 20% of the atmospheric flux, and other inputs, from open ocean waters, 226Ra decay, groundwater seepage, and sewage discharge, appear to be negligible. The total input of excess 210Pb represents approximately the flux required to maintain the inventory of excess 210Pb measured in sediment cores from central Long Island Sound; that is, excess 210Pb is lost from Long Island Sound chiefly by radioactive decay. The retention of excess 210Pb within Long Island Sound is achieved in two steps: a rapid removal of soluble 210Pb onto suspended particles and the ongoing entrapment of particles in the basin by the residual bottom-water influx from the east.  相似文献   
29.

Kimberlites are rare volatile-rich ultramafic magmas thought to erupt in short periods of time (<1 Myr) but there is a growing body of evidence that the emplacement history of a kimberlite can be significantly more protracted. In this study we report a detailed geochronology investigation of a single kimberlite pipe from the Renard cluster in north-central Québec. Ten new high precision ID-TIMS (isotope dilution – thermal ionization mass spectrometry) U-Pb groundmass perovskite dates from the main pipe-infilling kimberlites and several small hypabyssal kimberlites from the Renard 2 pipe indicate kimberlite magmatism lasted at least ~20 Myr. Two samples of the main pipe-infilling kimberlites yield identical weighted mean 206Pb/238U perovskite dates with a composite date of 643.8 ± 1.0 Myr, interpreted to be the best estimate for main pipe emplacement. In contrast, six hypabyssal kimberlite samples yielded a range of weighted mean 206Pb/238U perovskite dates between ~652-632 Myr. Multiple dates determined from these early-, syn- and late-stage small hypabyssal kimberlites in the Renard 2 pipe demonstrate this rock type (commonly used to date kimberlites) help to constrain the duration of kimberlite intrusion history within a pipe but do not necessarily reliably record the emplacement age of the main diatreme in the Renard cluster. Our results provide the first robust geochronological data on a single kimberlite that confirms the field relationships initially observed by Wagner (1914) and Clement (1982); the presence of antecedent (diatreme precursor) intrusions, contemporaneous (syn-diatreme) intrusions, and consequent (post-diatreme) cross-cutting intrusions. The results of this detailed U-Pb geochronology study indicate a single kimberlite pipe can record millions of years of magmatism, much longer than previously thought from the classical viewpoint of a rapid and short-duration emplacement history.

  相似文献   
30.
Cyclic voltammetry has been done for Ni2+, Co2+, and Zn2+ in melts of diopside composition in the temperature range 1425 to 1575°C. Voltammetric curves for all three ions excellently match theoretical curves for uncomplicated, reversible charge transfer at the Pt electrode. This implies that the neutral metal atoms remain dissolved in the melt. The reference electrode is a form of oxygen electrode. Relative to that reference assigned a reduction potential of 0.00 volt, the values of standard reduction potential for the ions are E1 (Ni2+Ni0, diopside, 1500°C) = ?0.32 ± .01 V, E1 (Co2+Co0, diopside, 1500°C) = ?0.45 ± .02 V, and E1 (Zn2+Zn0, diopside, 1500°C) = ?0.53 ± .01 V. The electrode reactions are rapid, with first order rate constants of the order of 10?2 cm/sec. Diffusion coefficients were found to be 2.6 × 10?6 cm2/sec for Ni2+, 3.4 × 10?6 cm2/sec for Co2+, and 3.8 × 10?6 cm2/sec for Zn2+ at 1500°C. The value of E1 (Ni2+Ni0, diopside) is a linear function of temperature over the range studied, with values of ?0.35 V at 1425°C and ?0.29 V at 1575°C. At constant temperature the value of E1 (Ni2+Ni0, 1525°C) was not observed to vary with composition over the range CaO · MgO · 2SiO2 to CaO·MgO·3SiO2 or from 1.67 CaO·0.33MgO·2SiO2 to 0.5 CaO·1.5MgO·2SiO2. The value for the diffusion coefficient for Ni2+ decreased by an order of magnitude at 1525°C over the compositional range CaO · MgO · 1.25SiO2 to CaO · MgO · 3SiO2. This is consistent with a mechanism by which Ni2+ ions diffuse by moving from one octahedral coordination site to another in the melt, with the same Ni2+ species discharging at the cathode regardless of the SiO2 concentration in the melt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号