首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2684篇
  免费   73篇
  国内免费   49篇
测绘学   272篇
大气科学   256篇
地球物理   491篇
地质学   1232篇
海洋学   130篇
天文学   320篇
综合类   50篇
自然地理   55篇
  2023年   16篇
  2022年   52篇
  2021年   60篇
  2020年   62篇
  2019年   65篇
  2018年   244篇
  2017年   226篇
  2016年   213篇
  2015年   128篇
  2014年   189篇
  2013年   248篇
  2012年   154篇
  2011年   150篇
  2010年   130篇
  2009年   130篇
  2008年   114篇
  2007年   72篇
  2006年   65篇
  2005年   45篇
  2004年   36篇
  2003年   30篇
  2002年   21篇
  2001年   16篇
  2000年   27篇
  1999年   18篇
  1998年   14篇
  1997年   16篇
  1996年   9篇
  1995年   9篇
  1994年   18篇
  1993年   13篇
  1992年   6篇
  1991年   23篇
  1990年   18篇
  1989年   14篇
  1988年   10篇
  1987年   17篇
  1986年   14篇
  1985年   15篇
  1984年   11篇
  1982年   6篇
  1980年   5篇
  1979年   8篇
  1978年   5篇
  1975年   6篇
  1974年   11篇
  1973年   5篇
  1972年   8篇
  1971年   5篇
  1969年   5篇
排序方式: 共有2806条查询结果,搜索用时 46 毫秒
251.
An experimental investigation was undertaken to study the effects of lime-stabilized soil-cushion on the strength behavior of expansive soil. In the present investigation, a series of laboratory tests (Unconfined compression tests and CBR tests) were conducted on both expansive soil alone and expansive soil cushioned with lime-stabilized non-expansive cohesive soil. Lime contents of 2, 4, 6, 8 and 10% by dry weight of cohesive non-swelling soil was used in the stabilized soil cushion. Both expansive soil and lime stabilized soil cushion were compacted to Standard Proctor’s optimum condition with thickness ratio 2:1. Tests on cushioned expansive soils were conducted at different curing and soaking periods i.e., 7, 14, 28 and 56 days. The test results revealed that maximum increase in strength was achieved after 14 days of curing or soaking period with 8% of lime content.  相似文献   
252.
The native riparian herbs such as Leonotis nepetaefolia (L.) R. Br., Cassia tora L., Ageratum conyzoides L., Parthenium hysterophorus L. and Sida acuta burm f., dominant on the bank of River Damodar in Eastern Jharia Area, Dhanbad (India), were selected to assess experimentally their quantitative role in conserving the soil and reducing water runoff and nutrient (N and P) losses. A total of 42.5 mm simulated rainfall were applied at 30 cm h−1 rain intensity on both vegetated and bare plots. The collected runoff water and eroded soil from each plot were determined in terms of soil, water and nutrient conservation value (CV). Among the vegetated plots, soil CV ranged from 30 to 85% and water CV from 20 to 48%. Nutrient (N and P) CV varied from 22 to 65% for total-N, 48 to 80% for ammonia-N and 50 to 86% for nitrate-N. CV for total-P varied from 40 to 62%, inorganic-P from 42 to 60% and organic-P from 20 to 58%. In a stepwise multiple regression equation comprising four independent variables (canopy cover, litter mass, soil moisture and plant biomass), canopy cover explained 70–88% (P < 0.01) of variability in conserving soil, water and nutrient. The losses through runoff water and eroded soil from vegetated plots were found to be minimized to a great extent as compared to bare plots. The role of these species in maintaining the texture and fertility status of riparian soil is discussed.  相似文献   
253.
The activity concentration and the gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides (232Th, 226Ra and 40K) were determined in soil samples collected from ten different locations of Sirsa district of Haryana, using HPGe detector based on high-resolution gamma spectrometry system. The range of activity concentrations of 226Ra, 232Th and 40K in the soil samples from the studied areas varies from 19.18 Bq kg−1 (Moriwala) to 40.31 Bq kg−1 (Rori), 59.43 Bq kg−1 (Pipli) to 89.54 Bq kg−1 (Fatehpur) and 223.22 Bq kg−1 (Moriwala) to 313.32 Bq kg−1 (SamatKhera) with overall mean values of 27.94, 72.75 and 286.73 Bq kg−1 respectively. The absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranges between 8.84 and 18.58, 37.02 and 55.78, and 9.24 and 12.97 nGy h−1, respectively. The total absorbed dose in the study area ranges from 60.40 to 82.15 nGy h−1 with an average value of 70.12 nGy h−1. The calculated values of external hazard index (H ex) for the soil samples of the study area range from 0.36 to 0.49 with an average value of 0.42.  相似文献   
254.
A chemical factory near Ranipet town in Vellore district, in the state of Tamil Nadu, India produced chromium-based inorganic chemicals. The factory area in granite gnessic terrain receives an average annual rainfall of 1,000 mm. About 1.5 lakh tons of solid wastes rich in hexavalent chromium (Cr6+), spreading over an area of 14,000 m2 (about 3.5 acres), having about 4 m thickness, is accumulated in an open yard within the factory premises. The soil and groundwater in and around the factory area are contaminated with Cr6+ leached from dump site. Cr6+ is carcinogenic in nature and when leached in water can lead to respiratory disorders. Resistivity surveys comprising vertical electrical sounding, multielectrode resistivity imaging, drilling of bore wells, chemical analysis of soil, formation and groundwater samples and bore hole tracer studies were carried out within the factory and adjoining areas to decipher subsurface geology, hydraulic behavior of dyke as natural barrier and lateral and vertical extent of pollution zone in and around the chromium dump site. The data obtained were integrated and interpreted for understanding the pollution migration and its impact on environment. Remedial measures are suggested for containing the contamination.  相似文献   
255.
256.
Zhang  Fan  Xu  Ning  Wang  Chao  Guo  Mingjing  Kumar  Pankaj 《地理学报(英文版)》2023,33(2):340-356
Journal of Geographical Sciences - Rapid economic development and human activities have severely affected ecosystem function. Analysis of the spatial distribution of areas of rapid urbanization is...  相似文献   
257.
On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Under this changing scenario, elevation, slope aspect and integrated nutrient management(INM) may affect significantly soil quality and crop productivity. A study was conducted during 2009-2010 to 2010-2011 at the Ashti watershed of NWHR in a rainfed condition to examine the influence of elevation, slope aspect and integrated nutrient management(INM) on soil resource and crop productivity. Two years of farm demonstration trials indicated that crop productivity and soil quality is significantly affected by elevation, slope aspect and INM. Results showed that wheat equivalent yield(WEY) of improved technology increased crop productivity by -20%-37% compared to the conventional system. Intercropping of maize with cowpea and soybean enhanced yield by another 8%-17%. North aspect and higher elevation increased crop productivity by 15%-25% compared to south aspect and low elevation(except paddy). Intercropping of maize with cowpea and soybean enhanced yield by another 8%-15%. Irrespective of slope, elevation and cropping system, the WEY increased by -30% in this region due to INMtechnology. The influence of elevation, slope aspect and INM significantly affected soil resources(SQI) and soil carbon change(SCC). SCC is significantly correlated with SQI for conventional(R2 = 0.65*), INM technology(R2 = 0.81*) and for both technologies(R2 = 0.73*). It is recommended that at higher elevation.(except for paddy soils) with a north facing slope, INM is recommended for higher crop productivity; conservation of soil resources is recommended for the mid hills of NWHR; and single values of SCC are appropriate as a SQI for this region.  相似文献   
258.
We present new insights on the time-averaged surface velocities, convergence and extension rates along arc-normal transects in Kumaon, Garhwal and Kashmir–Himachal regions in the Indian Himalaya from 13 years of high-precision Global Positioning System (GPS) time series (1995–2008) derived from GPS data at 14 GPS permanent and 42 campaign stations between $29.5{-}35^{\circ }\hbox {N}$ and $76{-}81^{\circ }\hbox {E}$ . The GPS surface horizontal velocities vary significantly from the Higher to Lesser Himalaya and are of the order of 30 to 48 mm/year NE in ITRF 2005 reference frame, and 17 to 2 mm/year SW in an India fixed reference frame indicating that this region is accommodating less than 2 cm/year of the India–Eurasia plate motion ( ${\sim }4~\hbox {cm/year}$ ). The total arc-normal shortening varies between ${\sim }10{-}14~\hbox {mm/year}$ along the different transects of the northwest Himalayan wedge, between the Indo-Tsangpo suture to the north and the Indo-Gangetic foreland to the south indicating high strain accumulation in the Himalayan wedge. This convergence is being accommodated differentially along the arc-normal transects; ${\sim } 5{-}10~\hbox {mm/year}$ in Lesser Himalaya and 3–4 mm/year in Higher Himalaya south of South Tibetan Detachment. Most of the convergence in the Lesser Himalaya of Garhwal and Kumaon is being accommodated just south of the Main Central Thrust fault trace, indicating high strain accumulation in this region which is also consistent with the high seismic activity in this region. In addition, for the first time an arc-normal extension of ${\sim }6~\hbox {mm/year}$ has also been observed in the Tethyan Himalaya of Kumaon. Inverse modeling of GPS-derived surface deformation rates in Garhwal and Kumaon Himalaya using a single dislocation indicate that the Main Himalayan Thrust is locked from the surface to a depth of ${\sim }15{-}20~\hbox {km}$ over a width of 110 km with associated slip rate of ${\sim }16{-}18~\hbox {mm/year}$ . These results indicate that the arc-normal rates in the Northwest Himalaya have a complex deformation pattern involving both convergence and extension, and rigorous seismo-tectonic models in the Himalaya are necessary to account for this pattern. In addition, the results also gave an estimate of co-seismic and post-seismic motion associated with the 1999 Chamoli earthquake, which is modeled to derive the slip and geometry of the rupture plane.  相似文献   
259.
In this paper, the leading modes of ocean temperature anomalies (OTA) along the equatorial Pacific Ocean are analyzed and their connection with El Niño-Southern Oscillation (ENSO) and interdecadal variation is investigated. The first two leading modes of OTA are connected with the different phases of the canonical ENSO and display asymmetric features of ENSO evolution. The third leading mode depicts a tripole pattern with opposite variation of OTA above the thermocline in the central Pacific to that along the thermocline in the eastern and western Pacific. This mode is found to be associated with so-called ENSO-Modoki. Insignificant correlations of this mode with the first two leading modes suggest that ENSO-Modoki may be a mode that is independent to the canonical ENSO and also has longer time scales compared with the canonical ENSO. The fourth mode reflects a warming (cooling) tendency above (below) the thermocline since 2000. Both the first and second modes have a large contribution to the interdecadal change in thermocline during 1979–2012. Also, the analysis also documents that both ENSO and OTA shifted into higher frequency since 2000 compared with that during 1979–1999. Interestingly, the ENSO-Modoki related OTA mode does not have any trend or significant interdecadal shift during 1979–2012. In addition, it is shown that first four EOF modes seem robust before and after 1999/2000, suggesting that the interdecadal shift of the climate system in the tropical Pacific is mainly a frequency shift and the changes in spatial pattern are relatively small, although the mean states over two periods experienced some significant changes.  相似文献   
260.
Selected characteristics of dry spells and associated trends over India during the 1951–2007 period is studied using two gridded datasets: the Indian Meteorological Department (IMD) and the Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of the water resources (APHRODITE) datasets. Two precipitation thresholds, 1 and 3 mm, are used to define a dry day (and therefore dry spells) in this study. Comparison of the spatial patterns of the dry spell characteristics (mean number of dry days, mean number of dry spells, mean and maximum duration of dry spells) for the annual and summer monsoon period obtained with both datasets agree overall, except for the northernmost part of India. The number of dry days obtained with APHRODITE is larger for this region compared to IMD, which is consistent with the smaller precipitation for the region in APHRODITE. These differences are also visible in the spatial patterns of mean and maximum dry spell durations. Analysis of field significance associated with trends, at the level of 34 predefined meteorological subdivisions over the mainland, suggests better agreement between the two datasets in positive trends associated with number of dry days for the annual and summer monsoon period, for both thresholds. Important differences between the two datasets are noted in the field significance associated with the negative trends. While negative trends in annual maximum duration of dry spells appear field significant for the desert regions according to both datasets, they are found field significant for two regions (Punjab and South Interior Karnataka) for the monsoon period for both datasets. This study, in addition to providing information on the spatial and temporal patterns associated with dry spell characteristics, also allows identification of regions and characteristics where the two datasets agree/disagree.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号