首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37492篇
  免费   972篇
  国内免费   1052篇
测绘学   949篇
大气科学   2892篇
地球物理   7695篇
地质学   13813篇
海洋学   3343篇
天文学   8168篇
综合类   241篇
自然地理   2415篇
  2022年   291篇
  2021年   479篇
  2020年   457篇
  2019年   499篇
  2018年   917篇
  2017年   879篇
  2016年   1060篇
  2015年   728篇
  2014年   1059篇
  2013年   1875篇
  2012年   1349篇
  2011年   1793篇
  2010年   1566篇
  2009年   2022篇
  2008年   1702篇
  2007年   1770篇
  2006年   1702篇
  2005年   1222篇
  2004年   1140篇
  2003年   1039篇
  2002年   1008篇
  2001年   846篇
  2000年   826篇
  1999年   672篇
  1998年   717篇
  1997年   691篇
  1996年   575篇
  1995年   563篇
  1994年   480篇
  1993年   422篇
  1992年   420篇
  1991年   386篇
  1990年   458篇
  1989年   374篇
  1988年   356篇
  1987年   440篇
  1986年   346篇
  1985年   430篇
  1984年   531篇
  1983年   451篇
  1982年   452篇
  1981年   403篇
  1980年   419篇
  1979年   362篇
  1978年   345篇
  1977年   341篇
  1976年   309篇
  1975年   300篇
  1974年   314篇
  1973年   341篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
The way in which rocks and engineering materials heat‐up and dry‐out in the intertidal zone is of relevance to both weathering and ecology. These behaviours can be measured in the laboratory under controlled conditions designed to replicate those occurring in the field. Previous studies have demonstrated differences in thermal behaviours between rock types and through time as a result of soiling in terrestrial environments, but the influence of weathering and colonization on rock behaviours in the intertidal zone has not been previously assessed. We measured the warming and drying of blocks of rock (limestone and granite) and marine concrete during ‘low‐tide’ events simulated in the laboratory, before and after a period of exposure (eight months) on rock platforms in Cornwall, UK. As well as differences between the material types, temperatures of control (unexposed) and field‐exposed blocks differed in the order of 1 to 2 °C. Drying behaviours were also different after field exposure. Differences during the first few hours of exposure to air and heat were attributed to discolouration and albedo effects. Over longer periods of time, changes in the availability of near‐surface pore water as a result of micro‐scale bioerosion of limestone and the development of bio‐chemical crusts on marine concrete [observed using scanning electron microscopy (SEM)] are suggested as mechanisms enhancing and reducing, respectively, the efficiency of evaporative cooling. The retention of moisture by epilithic biofilms may also influence thermal and drying behaviours of granite. These observations represent one of the first examples of cross‐scalar biogeomorphic linkages in the intertidal zone. The significance of the results for the subsequent efficiency of weathering, and near‐surface micro‐climatic conditions experienced by colonizing organisms is discussed. The involvement of microorganisms in the creation of more (or less) ecologically stressful conditions through the alteration of substratum geomorphic properties and behaviours is suggested as an example of ‘biogeomorphic ecosystem engineering’. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
102.
Fluid inclusion and scanning electron microscope‐cathodoluminescence evidence indicates focused hot, saline, diagenetic fluid flow within the Eastern Flank of the Britannia Field, offshore Scotland, UK. The fluid was sourced from the Andrew Salt Dome, 10 km to the east. The fluids, which promoted quartz cementation of the upper zones within the field, were up to ~30°C hotter and had salinities up to ~10 wt% NaCl equivalent higher than fluids from lower in the reservoir section. During diagenesis hot saline fluids migrated westwards as part of a radiating ‘diagenetic front’ from the Andrew Salt Dome. Structural dip associated with the Eastern Flank of the Fladen Ground Spur impeded the westward movement of the diagenetic fluid. The quartz cements from the upper and lower reservoir zones can be distinguished by morphology. In the upper zones the quartz cements have well‐developed macro‐crystalline zoning and heterogeneous luminescence across the grain. In the lower zones, the cements are much less developed, unzoned and very weakly luminescent. The diagenetic fluids were primarily focused into Zone 45 within the upper reservoir. Furthermore, within the Main Platform Area the most prolific producing zone is Zone 45, indicating the importance of this interval as a permeable flow unit during both diagenetic and production timescales. Within the Eastern Flank, the quartz overgrowths have a major impact on reservoir permeability and thus well productivity. The overgrowths are most extensive in the originally clean sandstones with low clay content. Clay in optimum volumes (5–10%) can inhibit nucleation of the damaging quartz overgrowths without having a detrimental effect on pore connectivity. These observations provide a predictive concept for use in the search for relative reservoir sweetspots within the degraded Eastern Flank.  相似文献   
103.
104.
105.
The Mechanical Coupling of Fluid-Filled Granular Material Under Shear   总被引:1,自引:0,他引:1  
The coupled mechanics of fluid-filled granular media controls the physics of many Earth systems, for example saturated soils, fault gouge, and landslide shear zones. It is well established that when the pore fluid pressure rises, the shear resistance of fluid-filled granular systems decreases, and, as a result, catastrophic events such as soil liquefaction, earthquakes, and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the shear resistance of these geosystems increases. Despite the great importance of the coupled mechanics of grain–fluid systems, the basic physics that controls this coupling is far from understood. Fundamental questions that must be addressed include: what are the processes that control pore fluid pressurization and depressurization in response to deformation of the granular skeleton? and how do variations of pore pressure affect the mechanical strength of the grains skeleton? To answer these questions, a formulation for the pore fluid pressure and flow has been developed from mass and momentum conservation, and is coupled with a granular dynamics algorithm that solves the grain dynamics, to form a fully coupled model. The pore fluid formulation reveals that the evolution of pore pressure obeys viscoelastic rheology in response to pore space variations. Under undrained conditions elastic-like behavior dominates and leads to a linear relationship between pore pressure and overall volumetric strain. Viscous-like behavior dominates under well-drained conditions and leads to a linear relationship between pore pressure and volumetric strain rate. Numerical simulations reveal the possibility of liquefaction under drained and initially over-compacted conditions, which were often believed to be resistant to liquefaction. Under such conditions liquefaction occurs during short compactive phases that punctuate the overall dilative trend. In addition, the previously recognized generation of elevated pore pressure under undrained compactive conditions is observed. Simulations also show that during liquefaction events stress chains are detached, the external load becomes completely supported by the pressurized pore fluid, and shear resistance vanishes.  相似文献   
106.
In order to check the premature siltation of the reservoirs and guard against the drop in the irrigation potential, the Government of India has launched the schemes of soil conservation and integrated watershed management in the catchments of RVPs and Flood Prone rivers. Owing to the large financial and manpower commitments needed to implement and execute soil conservation measures over vast catchment areas, a priority approach for treatment was identified. The methodology developed for prioritization of watersheds of a catchment area conceptualizes sedimentation of the reservoirs as a multiplicative function of erosivity value and the delivery ratio. This paper deals with the development of a computerized data base software module ‘WEIGHT’ for determination of erosivity values for the mapping units comprising assemblages of the varying combinations of climate, physiography and slope, land use and cover conditions, soil characteristics (texture, solumn thickness, permeability and pH) and the existing erosion and soil conservation measures. The WEIGHT software package is coded in FORTRON-4 for PDP 11/83 operating system. the data base comprises storage of the attributes of the different erosivity determinants of the mapping units with predetermined erosivity values sequentially on a disk and comparing the attributes of a new mapping unit to get the most probabilities erosivity value. The objective has been to eliminate the personal bias and bring about the objectivity in the process of assigning erosivity values to the different mapping units. The data base design, design logic and operational sequence of the data base are discussed in the paper.  相似文献   
107.
宋春霞  黄茂松  吕玺琳 《岩土力学》2011,32(9):2645-2650
非均质是软黏土地基中比较普遍的现象,而目前隧道开挖面稳定研究中比较成熟的理论主要是针对均质土体。因此,从塑性极限分析上限法的基本原理出发,采用平面应变隧道刚体平动破坏模式(多块体上限法),考虑软黏土地基的非均质性,推导了平面应变隧道极限支护压力关于隧道埋深、土体重度及土体强度的上限公式。通过与其他方法的比较分析,证明了极限分析方法在隧道开挖面稳定性方面的可行性;利用该方法的计算结果详细探讨了隧道开挖面稳定的影响因素;而且由计算结果可知,地基土的非均质性在影响隧道开挖面极限支护压力的同时,也影响着隧道开挖破坏面的位置和形状,为工程实践提供重要的理论依据。  相似文献   
108.
109.
We augment our scenario for the formation of astronomical objects from macroscopic superstrings by the assumption that the central matter keeps its identity in the fragmentation. From the condition that the angular momentum per mass squared of this matter should be less than the Kerr limit G/c, we obtain upper limits for the ratio of the mass of central black holes M(BH) to the mass M of the host object. This limit is M(BH)/M ≈ 0.001, and, expressed in observed quantities, approximately M(BH)/Mσ2/(v · c) where σ is the r.m.s. velocity, v the rotational velocity and c the velocity of light. The valuesM(BH) agree with the observed behaviour both in order of magnitude and in the variation with velocity dispersion. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号