首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74029篇
  免费   1133篇
  国内免费   1219篇
测绘学   1920篇
大气科学   5167篇
地球物理   14004篇
地质学   29962篇
海洋学   6213篇
天文学   15103篇
综合类   405篇
自然地理   3607篇
  2022年   513篇
  2021年   821篇
  2020年   794篇
  2019年   868篇
  2018年   4038篇
  2017年   3762篇
  2016年   3036篇
  2015年   1130篇
  2014年   1688篇
  2013年   2940篇
  2012年   2910篇
  2011年   4821篇
  2010年   4304篇
  2009年   4969篇
  2008年   4079篇
  2007年   4744篇
  2006年   2617篇
  2005年   2030篇
  2004年   1881篇
  2003年   1853篇
  2002年   1692篇
  2001年   1297篇
  2000年   1200篇
  1999年   944篇
  1998年   985篇
  1997年   950篇
  1996年   804篇
  1995年   783篇
  1994年   680篇
  1993年   578篇
  1992年   609篇
  1991年   544篇
  1990年   612篇
  1989年   539篇
  1988年   484篇
  1987年   600篇
  1986年   491篇
  1985年   602篇
  1984年   694篇
  1983年   621篇
  1982年   616篇
  1981年   570篇
  1980年   571篇
  1979年   512篇
  1978年   482篇
  1977年   469篇
  1976年   424篇
  1975年   416篇
  1974年   423篇
  1973年   483篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We present the main findings of a dynamical mapping performed in the Low Earth Orbit region. The results were obtained by propagating an extended grid of initial conditions, considering two different epochs and area-to-mass ratios, by means of a singly averaged numerical propagator. It turns out that dynamical resonances associated with high-degree geopotential harmonics, lunisolar perturbations and Solar radiation pressure can open natural deorbiting highways. For area-to-mass ratios typical of the orbiting intact objects, these corridors can be exploited only in combination with the action exerted by the atmospheric drag. For satellites equipped with an area augmentation device, we show the boundary of application of the drag, and where the Solar radiation pressure can be exploited.  相似文献   
992.
The late-stage formation of giant planetary systems is rich in interesting dynamical mechanisms. Previous simulations of three giant planets initially on quasi-circular and quasi-coplanar orbits in the gas disc have shown that highly mutually inclined configurations can be formed, despite the strong eccentricity and inclination damping exerted by the disc. Much attention has been directed to inclination-type resonance, asking for large eccentricities to be acquired during the migration of the planets. Here we show that inclination excitation is also present at small to moderate eccentricities in two-planet systems that have previously experienced an ejection or a merging and are close to resonant commensurabilities at the end of the gas phase. We perform a dynamical analysis of these planetary systems, guided by the computation of planar families of periodic orbits and the bifurcation of families of spatial periodic orbits. We show that inclination excitation at small to moderate eccentricities can be produced by (temporary) capture in inclination-type resonance and the possible proximity of the non-coplanar systems to spatial periodic orbits contributes to maintaining their mutual inclination over long periods of time.  相似文献   
993.
994.
Being the largest gravitationally bound structures in the Universe, galaxy clusters are huge reservoirs of photons generated by the bremsstrahlung of a hot cluster gas. We consider the absorption of high-energy photons from distant cosmological gamma-ray sources by the bremsstrahlung of galaxy clusters. The magnitude of this effect is the third in order of smallness after the effects of absorption by the cosmic microwave background and absorption by the extragalactic background light. Our calculations of the effect of absorption by the bremsstrahlung of galaxy clusters have shown that this effect manifests itself in the energy range ~1–100 GeV and can be τ ~ 10?5 in optical depth.  相似文献   
995.
We investigate the evolution of high Earth satellite orbits under gravitational perturbations from the Sun and light pressure forces, without the Earth shadow effect. We present the disturbing function of the problem provided that the satellite is a sphere. The mean value of the disturbing function in the absence of resonances between the mean unperturbed motion of the satellite and the mean motion of the Sun has also been obtained. The semimajor axis of the satellite orbit and the mean value of the disturbing function are shown to be integrals of the averaged osculating equations. TheHill version of the problem, whereby the distance to the satellite is much smaller than the Earth–Sun distance, has been studied in detail: we have constructed the phase portraits of the oscillations at various parameters and described three types of quasiperiodic satellite trajectories—librational and rotational trajectories as well as Earth collision trajectories. Numerical simulations of trajectories have allowed the additional effects caused by light pressure to be described: the displacement of the bounded trajectory of the satellite as a whole relative to the trajectory of the classical three-body problem into a region more distant from the Sun.  相似文献   
996.
The interplanetary mission, Venera-D, which is currently being planned, includes a lander. For a successful landing, it is necessary to estimate the frequency distributions of slopes of the Venusian surface at baselines that are comparable with the horizontal dimensions of lander (1–3 m). The available data on the topographic variations on Venus preclude estimates of the frequency of the short-wavelength slopes. In our study, we applied high-resolution digital terrain models (DTM) for specific areas in Iceland to estimate the slopes on Venus. The Iceland DTMs have 0.5 m spatial and 0.1 m vertical resolution. From the set of these DTMs, we have selected those that morphologically resemble typical landscapes on Venus such as tessera, shield, regional, lobate, and smooth plains. The mode of the frequency distribution of slopes on the model tessera terrain is within a 30°–40° range and a fraction of the surface has slopes <7°, which is considered as the upper safety limit. This is the primary interest. The frequency distribution of slopes on the model tessera is not changed significantly as the baseline is changed from 1 m to 3 m. The terrestrial surfaces that model shield and regional plains on Venus have a prominent slope distribution mode between 8°–20° and the fraction of the surfaces with slopes <7° is less than 30% on both 1 m and 3 m baselines. A narrow, left-shifted histogram characterizes the model smooth plains surfaces. The fraction of surfaces with slopes <7° is about 65–75% for the shorter baseline (1 m). At the longer baseline, the fraction of the shallow-sloped surfaces is increased and fraction of the steep slopes is decreased significantly. The fraction of surfaces with slopes <7° for the 3-m baseline is about 75–88% for the terrains that model both lobate and smooth plains.  相似文献   
997.
The origin of the idea of AstroSat multi wavelength satellite mission and how it evolved over the next 15 years from a concept to the successful development of instruments for giving concrete shape to this mission, is recounted in this article. AstroSat is the outcome of intense deliberations in the Indian astronomy community leading to a consensus for a multi wavelength Observatory having broad spectral coverage over five decades in energy covering near-UV, far-UV, soft X-ray and hard X-ray bands. The multi wavelength observation capability of AstroSat with a suite of 4 co-aligned instruments and an X-ray sky monitor on a single satellite platform, imparts a unique character to this mission. AstroSat owes its realization to the collaborative efforts of the various ISRO centres, several Indian institutions, and a few institutions abroad which developed the 5 instruments and various sub systems of the satellite. AstroSat was launched on September 28, 2015 from India in a near equatorial 650 km circular orbit. The instruments are by and large working as planned and in the past 14 months more than 200 X-ray and UV sources have been studied with it. The important characteristics of AstroSat satellite and scientific instruments will be highlighted.  相似文献   
998.
999.
The studied region is a part of the current circuit of a magnetic loop in a solar active region in the altitude range of 1400–2500 km above the photosphere. At the earliest stage of development of a flare process, the magnetic field of the loop was assumed to be stationary and uniform in the interval corresponding to weak fields (the so-called deca-hectogauss fields). The conditions for emergence and development of instability of the second harmonic of Bernstein modes in this previously unexamined region were determined. This instability (and low-frequency instabilities emerging later) was assumed to be caused by the sub-Dreicer electric field of the loop, while pair Coulomb collisions were considered to be the major factor hindering its development. The obtained extremely low instability thresholds point to the possibility of subsequent emergence of low-frequency instabilities (and plasma waves corresponding to them) with much higher threshold values against the background of saturated Bernstein turbulence. The frequency of electron scattering by turbulence pulsations in this scenario normally exceeds the frequency of pair Coulomb (primarily ion–electron) collisions. Both the quasistatic sub-Dreicer field in the loop and the weak spatial inhomogeneity of plasma temperature and density were taken into account in the process of derivation and analysis of the dispersion relation for low-frequency waves. It was demonstrated that the solutions of the obtained dispersion relation in the cases of prevalent pair Coulomb collisions and dominant electron momentum losses at pulsations of saturated Bernstein turbulence are morphologically similar and differ only in the boundary values of perturbation parameters. In both cases, these solutions correspond to the two wave families, namely, kinetic Alfven waves and kinetic ion acoustic waves. These waves have their own electric fields and may play the important role in the process of preflare acceleration of energetic electrons.  相似文献   
1000.
The formation of first molecules, negative Hydrogen ions, and molecular ions in a model of the Universe with cosmological constant and cold dark matter is studied. The cosmological recombination is described in the framework of modified model of the effective 3-level atom, while the kinetics of chemical reactions is described in the framework of the minimal model for Hydrogen, Deuterium, and Helium. It is found that the uncertainties of molecular abundances caused by the inaccuracies of computation of cosmological recombination are approximately 2–3%. The uncertainties of values of cosmological parameters affect the abundances of molecules, negative Hydrogen ions, and molecular ions at the level of up to 2%. In the absence of cosmological reionization at redshift z = 10, the ratios of abundances to the Hydrogen one are 3.08 × 10–13 for H, 2.37 × 10–6 for H2, 1.26 × 10–13 for H2+, 1.12 × 10–9 for HD, and 8.54 × 10–14 for HeH+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号