首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37630篇
  免费   1104篇
  国内免费   936篇
测绘学   970篇
大气科学   2877篇
地球物理   7742篇
地质学   13800篇
海洋学   3364篇
天文学   8232篇
综合类   238篇
自然地理   2447篇
  2022年   274篇
  2021年   459篇
  2020年   431篇
  2019年   497篇
  2018年   927篇
  2017年   882篇
  2016年   1060篇
  2015年   723篇
  2014年   1047篇
  2013年   1895篇
  2012年   1353篇
  2011年   1803篇
  2010年   1577篇
  2009年   2051篇
  2008年   1720篇
  2007年   1794篇
  2006年   1719篇
  2005年   1246篇
  2004年   1159篇
  2003年   1050篇
  2002年   1016篇
  2001年   852篇
  2000年   836篇
  1999年   676篇
  1998年   723篇
  1997年   695篇
  1996年   575篇
  1995年   567篇
  1994年   483篇
  1993年   423篇
  1992年   419篇
  1991年   389篇
  1990年   460篇
  1989年   375篇
  1988年   358篇
  1987年   440篇
  1986年   345篇
  1985年   433篇
  1984年   536篇
  1983年   454篇
  1982年   457篇
  1981年   406篇
  1980年   421篇
  1979年   363篇
  1978年   345篇
  1977年   340篇
  1976年   313篇
  1975年   297篇
  1974年   313篇
  1973年   342篇
排序方式: 共有10000条查询结果,搜索用时 515 毫秒
991.
The impact of changing catchment vegetation type on mean annual runoff has been known for some time, however, the impact on the variability of annual runoff has been established only recently. Differences in annual actual evapotranspiration between vegetation types and the potential effect of changing vegetation type on mean annual runoff and the variability of annual runoff are briefly reviewed. The magnitude of any change in the variability of annual runoff owing to a change in catchment vegetation type is related to the pre‐ and post‐change vegetation types and the seasonality of precipitation, assuming that the variability of annual precipitation remains constant throughout. Significant implications of the relationship between vegetation type and the variability of annual runoff are presented and discussed for water resource management, stream ecology and fluvial geomorphology. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
992.
世界许多地区如墨西哥湾,存在着大量天然气渗漏并形成水合物的现象,出于科学,生态,气候和安全的需要。人类有必要弄清存在于海底以水合成形式存在的天然气的比例。因此,构建了水合物形成量的线性动力学模型,以分析墨西哥湾GC185块区Bush高地海底渗漏天然气的地质过程和行为。Bush高地渗漏的天然气来源于附近的Jolliet气藏,结果表明,渗漏天然气中约有9%的海底形成了水合物。  相似文献   
993.
Lithology and Mineral Resources - The chemical composition and Nd isotope systematics were obtained for mudrocks (mudstones) from sections of the Siberian hypostratotype of the Riphean and Vendian...  相似文献   
994.
995.
The chemical content of the Souss unconfined groundwater displays spatial variations in conductivity (between 400 and 6,000 µS cm-1). The chemical tracers (Cl-, SO42-, Sr2+, Br-), which characterize the different components of the groundwater, allowed the determination of the origin of water salinity. Cl- and SO42-, reaching respectively 2,000 and 1,650 mg L-1, display localized salinity anomalies. Br-/Cl- ratio distinguishes marine-influenced impoverished zones versus the oceanic domain. Thus, salinity anomalies can be attributed: (1) downstream, to a currently existing salt-encroachment (with added waste water) and sedimentary palaeosalinity, (2) in the middle-Souss, to High Atlas evaporites and to irrigation water recycling. Sr2+/Ca2+ ratio (evaporites if >1‰), confirms the evaporitic origin of the anomalies along the right bank of oued Souss. Furthermore, it facilitates the distinction between the different aquifer contributions (Cretaceous, Jurassic and Triassic), and it highlights leakage from deep Turonian limestones in the groundwater recharge system. To the south, recharge is from the Anti Atlas (evaporite-free) waters. Oxygen-18 measurements confirm the groundwater recharge from the High and Anti Atlas as piezometric maps and chemical tracers suggested, plus from leakage from the Turonian and the marine aquifers.  相似文献   
996.
New compositional data and petrogenetic models are presentedfor pre-Upper Miocene volcanism in the northern Puna of Argentina(22°S–24°S). Two phases of volcanism producedsmall dome complexes of mainly silicic andesite to low-SiO2rhyolite. The Upper Oligocene–Lower Miocene phase (UOLM,20–17 Ma), produced two distinct groups of rocks. TheUOLM-1 group is metaluminous and mainly andesitic, with isotopiccompositions like those of the recent arc (87Sr/86SrT  相似文献   
997.
Crustal Evolution in the SW Part of the Baltic Shield: the Hf Isotope Evidence   总被引:17,自引:0,他引:17  
The results of a laser ablation microprobe–inductivelycoupled plasma mass spectrometry Lu–Hf isotope study ofzircons in 0·93–1·67 Ga rocks from southNorway indicate that early Proterozoic protoliths of the BalticShield have present-day 176Hf/177Hf  相似文献   
998.
Syntectonic antitaxial and ataxial fibrous veins were investigated using SEM, microprobe, cathodoluminescence (CL) and optical microscopy. In antitaxial calcite veins, fibres and surrounding selvage grew simultaneously, with similar growth rates of crystallographically differently oriented grains. New material precipitated at the vein margin in antitaxial and bi-mineralic ataxial microstructures. Bridges of country rock material formed during vein growth in an initial en-echelon vein system. In our antitaxial and bi-mineralic ataxial samples, the spacing of solid inclusions does not reflect individual crack-seal openings.  相似文献   
999.
The lack of earthquake-induced liquefaction features in Late Wisconsin and Holocene sediments in Genesee, Wyoming, and Allegany Counties suggests that the Clarendon–Linden fault system (CLF) did not generate large, moment magnitude, M≥6 earthquakes during the past 12,000 years. Given that it was the likely source of the 1929 M 4.9 Attica earthquake, however, the Clarenden–Linden fault system probably is capable of producing future M5 events. During this study, we reviewed newspaper accounts of the 1929 Attica earthquake, searched for earthquake-induced liquefaction features in sand and gravel pits and along tens of kilometers of river cutbanks, evaluated numerous soft-sediment deformation structures, compiled geotechnical data and performed liquefaction potential analysis of saturated sandy sediments. We found that the 1929 M 4.9 Attica earthquake probably did not induce liquefaction in its epicentral area and may have been generated by the western branch of the Clarendon–Linden fault system. Most soft-sediment deformation structures found during reconnaissance did not resemble earthquake-induced liquefaction features, and even the few that did could be attributed to non-seismic processes. Our analysis suggests that the magnitude threshold for liquefaction is between M 5.2 and 6, that a large (M≥6) earthquake would liquefy sediments at many sites in the area, and that a moderate earthquake (M 5–5.9) would liquefy sediments at some sites but perhaps not at enough sites to have been found during reconnaissance. We conclude that the Clarendon–Linden fault system could have produced small and moderate earthquakes, but probably not large events, during the Late Wisconsin and Holocene.  相似文献   
1000.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号