首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   16篇
  国内免费   14篇
测绘学   7篇
大气科学   49篇
地球物理   94篇
地质学   76篇
海洋学   98篇
天文学   30篇
综合类   9篇
自然地理   11篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   8篇
  2018年   15篇
  2017年   12篇
  2016年   26篇
  2015年   24篇
  2014年   22篇
  2013年   28篇
  2012年   28篇
  2011年   26篇
  2010年   21篇
  2009年   17篇
  2008年   15篇
  2007年   21篇
  2006年   13篇
  2005年   22篇
  2004年   14篇
  2003年   13篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1992年   4篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有374条查询结果,搜索用时 406 毫秒
241.
This study evaluated the efficiency of naturally occurring lime-based waste materials (oyster shells, eggshells, and mussel shells) on immobilization of selected heavy metals (Cd and Pb) and a metalloid (As) in a contaminated agricultural soil. A 30-day incubation experiment was performed using soil mixture with natural liming materials or calcite (CaCO3) at 0, 1, 3, 5, and 10 wt %. Soil biochemical properties including pH, electrical conductivity (EC), exchangeable cations, organic matter (OM), total nitrogen (TN), microbial populations, and enzyme activities were determined to ensure the changes in soil quality during incubation. The results showed that the application of natural liming materials led to an increase in soil pH similar to that of CaCO3. Soil concentrations of Cd, Pb, and As extracted with 0.1 or 1 M HCl, and diethylene triamine pentacetic acid (DTPA) were decreased significantly after adding liming materials, accompanied by increased microbial population and enzyme activities of dehydrogenase, phosphatase, β-glucosidase, and arylsulfatase. Additionally, eggshells and mussel shells induced significant increases in OM and TN in the soil. Application of natural liming materials offers a cost-effective way to immobilize heavy metals and metalloids in soils.  相似文献   
242.
The successful launch and commissioning of the first geostationary meteorological satellite of Korea has the potential to enhance earth observation capability over the Asia Pacific region. Although the specifications of the payload, the meteorological imager(MI), have been verified during both ground and in-orbit tests, there is the possibility of variation and/or degradation of data quality due to many different reasons, such as the accumulation of contaminants, the aging of instrument components, and unexpected external disturbance. Thus, for better utilization of MI data, it is imperative to continuously monitor and maintain the data quality. As a part of such activity, this study presents an inter-calibration, based on the Global Space-based Inter-Calibration System(GSICS), between the MI data and the high quality hyperspectral data from the Infrared Atmospheric Sounding Interferometer(IASI) of the Metop-A satellite. Both sets of data, acquired for three years from April 2011 to March 2014, are processed to prepare the matchup dataset, which is spatially collocated, temporally concurrent,angularly coincident, and spectrally comparable. The results show that the MI data are stable within the specifications and show no significant degradation during the study period. However, the water vapor channel shows a rather large bias value of-0.77 K, with a root-mean-square difference(RMSD) of around 1.1 K, which is thought to be due to the shift in the spectral response function. The shortwave channel shows a maximum RMSD of around 1.39 K, mainly due to the coarse digitization at the lower temperature. The inter-comparison results are re-checked through a sensitivity analysis with different sets of threshold values used for the matchup dataset. Based on this, we confirm that the overall quality of the MI data meets the user requirements and maintains the expected performance, although the water vapor channel requires further investigation.  相似文献   
243.
An integrally coupled wave-tide-surge model was developed and then applied to the simulation of the wave-typhoon surge for the typhoon Isewan (typhoon Vera (5915)), which is the strongest typhoon that has struck Japan and caused incalculable damage. An integrally coupled tide-surge-wave model using identical and homogeneous meshes in an unstructured grid system was used to correctly resolve the physics of wave-circulation interaction in both models. All model components were validated independently. The storm surge and wave properties such as the surge height, the significant wave height, wave period and direction were reproduced reasonably under the meteorological forcing, which was reprocessed to be close to the observations. The resulting modeling system can be used extensively for the prediction of the storm surge and waves and the usual barotropic forecast.  相似文献   
244.
245.
The objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of shear modulus as a function of strain. In this paper the meaning of the material stiffness obtained from impact and harmonic excitation tests on a surface slab is discussed. A one‐dimensional discrete model with the nonlinear material stiffness is used for this purpose. When a static load is applied followed by an impact excitation, if the amplitude of the impact is very small, the measured wave velocity using the cross‐correlation indicates the wave velocity calculated from the tangent modulus corresponding to the state of stress caused by the applied static load. The duration of the impact affects the magnitude of the displacement and the particle velocity but has very little effect on the estimation of the wave velocity for the magnitudes considered herein. When a harmonic excitation is applied, the cross‐correlation of the time histories at different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress–strain loop under steady‐state condition. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
246.
The drastic expansion of cities and the rapid economic growth in Korea have caused dramatic increases to demand from groundwater supplies for drinking, domestic, agricultural and industrial water usage. The Ministry of Construction and Transportation and the Korea Water Resources Corporation have constructed and operated the National Groundwater Monitoring Network (NGMN) throughout the country since 1995. The NGMN, an official project establishing a total of 320 groundwater monitoring stations, was completed in 2005. Each national groundwater monitoring station serves as a baseline and primary station to monitor long‐term general trends in water‐level fluctuations and in groundwater quality. The present NGMN and its monitoring capabilities were evaluated to enhance the efficiency of groundwater monitoring and to meet the new societal conditions. Based on reviews and evaluations, some suggestions and recommendations are made with regard to improvements of the national network, including the installation of rainfall gauges in groundwater monitoring stations, gathering groundwater data every hour instead of every 6 h as at present, involving major cations and anions in the regular and periodic chemical analyses, regular periodic analyses of collected groundwater data, and construction of 199 additional groundwater monitoring stations to supplement the existing groundwater monitoring network. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
247.
248.
It is demonstrated that the magnetospheric convection becomes evident in terms of the AE index only when the power ? of the solar wind-magnetosphere dynamo becomes greater than ~ 1018 erg s?1 or a slightly lower value. An enhanced conductivity is a crucial factor for the magnetospheric convection to manifest even in a low-level increase of the AE index of ~ 50–100 γ.  相似文献   
249.
The ultimate objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of soil modulus as a function of strain. In field experiments, an excitation is applied on the ground surface using large‐scale shakers, and the response of the soil deposit is recorded through receivers embedded in the soil. The focus of this paper is on the simulation and observation of signals that would be recorded at the receiver locations under idealized conditions to provide guidelines on the interpretation of the field measurements. Discrete models are used to reproduce one‐dimensional and three‐dimensional geometries. When the first times of arrival are detected by receivers under the vertical impulse, they coincide with the arrival of the P wave; therefore related to the constrained modulus of the material. If one considers, on the other hand, phase differences between the motions at two receivers, the picture is far more complicated and one would obtain propagation velocities, function of frequency and measuring location, which do not correspond to either the constrained modulus or Young's modulus. It is necessary then to conduct more rigorous and complicated analyses in order to interpret the data. This paper discusses and illustrates these points. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
250.
Excessive application of poultry litter to pastures in the Sand Mountain region of north Alabama has resulted in phosphorus (P) contamination of surface water bodies and buildup of P in soils of this region. Since surface runoff is recognized as the primary mechanism of P transport, understanding surface runoff generation mechanisms are crucial for alleviating water quality problems in this region. Identification of surface runoff generation mechanisms is also important for delineation of hydrologically active areas (HAAs). Therefore, the specific objective of this study was to identify surface runoff generation mechanisms (infiltration excess versus saturation excess) using distributed surface and subsurface sensors and rain gauge. Results from three rainfall events (2·13–3·43 cm) of differing characteristics, and sensor data at four locations with differing soil hydraulic properties along the hillslope showed that the main surface runoff generation mechanism in this region is infiltration excess. Because of this, rainfall intensity and soil hydraulic conductivity were found to play dominant roles in surface runoff generation in this region. Further, only short periods of a few rainfall events during which the rainfall intensity is high produce surface runoff. This study indicates that perhaps subsurface flows and transport of P in subsurface flows need to be quantified to reduce P contamination of surface water bodies in this region. Current studies at this location are identifying spatial and temporal distribution of HAAs, quantifying rainfall characteristics that generate runoff, and estimating runoff volume that results from connected HAAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号