首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   8篇
  国内免费   2篇
测绘学   10篇
大气科学   8篇
地球物理   152篇
地质学   241篇
海洋学   39篇
天文学   61篇
综合类   1篇
自然地理   55篇
  2019年   6篇
  2018年   4篇
  2017年   10篇
  2016年   9篇
  2015年   4篇
  2014年   18篇
  2013年   27篇
  2012年   13篇
  2011年   23篇
  2010年   25篇
  2009年   22篇
  2008年   22篇
  2007年   17篇
  2006年   25篇
  2005年   10篇
  2004年   9篇
  2003年   16篇
  2002年   12篇
  2001年   15篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   9篇
  1995年   7篇
  1994年   8篇
  1993年   5篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1984年   5篇
  1983年   10篇
  1982年   12篇
  1981年   8篇
  1980年   12篇
  1979年   8篇
  1978年   4篇
  1977年   4篇
  1974年   7篇
  1973年   4篇
  1968年   4篇
  1965年   6篇
  1964年   4篇
  1962年   4篇
  1953年   5篇
  1952年   4篇
  1951年   5篇
  1950年   4篇
  1949年   8篇
排序方式: 共有567条查询结果,搜索用时 265 毫秒
351.
Seven hitherto unpublished Dorcatherium guntianum teeth from the Early Miocene of Germany are described. Morphology and size of the teeth are documented in detail and taxonomic affiliation is assessed based on comparisons to type materials of European tragulids. The fossils represent one of the earliest European Dorcatherium records and the oldest unequivocal evidence of D. guntianum from Germany. A review of the European Dorcatherium occurrence pattern suggests that a bunoselenodont and a selenodont lineage immigrated into Europe simultaneously from the East or Southeast, and corroborates the interpretation of the genus as being diphyletic. Moreover, our data add support to immigration scenarios that have been linked with the emerging freshwater wetlands, which formed as a result of the regression in the Western Paratethys.  相似文献   
352.
In the Gurbantünggüt Desert, snowmelt-induced high soil water contents briefly create favorable conditions for the germination and growth of plants every spring. Monitoring the rapidly changing conditions in this time period demands fast and efficient methods for measuring soil water contents at the field scale. For this study, a series of ground-penetrating radar (GPR) measurements were carried out on sites characterized by semi-vegetated dunes both in April 2010 and 2011. We compare water contents calculated from the GPR direct ground wave signal to both point scale validation measurements by time-domain reflectometry (TDR) and gravimetric sampling. Our results show that GPR is an effective method to rapidly obtain a detailed image of the field scale soil water content distribution in the Gurbantünggüt Desert with an accuracy similar to TDR. Observed large scale soil water content variations are dominated by dune topography: During snow melting, melt water was found to trickle slowly from the dune ridges to interdune valleys, increasing the soil water content there while the dune ridges quickly started to dry down. In dune valleys, smaller scale near-surface soil water content changes were dominated by variations in the vegetation coverage, leading to snowmelt funnels at distinct locations: The snowmelt initially occurred around the stems and branches of plants, forming funnel-shaped melt water induced holes through the snow cover and leading to an increasing amount of melt water collected around these plant roots. Our comparison of data from 2010 to 2011 furthermore suggests a temporally stable distribution of near-surface soil water content. This has important ecological significance for controlling desertification and for restoring and reconstructing vegetation in the Gurbantünggüt Desert.  相似文献   
353.
We present new equilibrium mixed-volatile (H2O–CO2) solubility data for a phonotephrite from Erebus volcano, Antarctica. H2O–CO2-saturated experiments were conducted at 400–700 MPa, 1,190 °C, and ~NNO + 1 in non-end-loaded piston cylinders. Equilibrium H2O–CO2 fluid compositions were determined using low-temperature vacuum manometry, and the volatile and major element compositions of the glassy run products were determined by Fourier transform infrared spectroscopy and electron microprobe. Results show that the phonotephrite used in this study will dissolve ~0.8 wt% CO2 at 700 MPa and a fluid composition of $ X_{{{\text{H}}_{ 2} {\text{O}}}} $ ~0.4, in agreement with previous experimental studies on mafic alkaline rocks. Furthermore, the dissolution of CO2 at moderate to high $ X_{{{\text{H}}_{ 2} {\text{O}}}}^{\text{fluid}} $ in our experiments exceeds that predicted using lower-pressure experiments on similar melts from the literature, suggesting a departure from Henrian behavior of volatiles in the melt at pressures above 400 MPa. With these data, we place new constraints on the modeling of Erebus melt inclusion and gas emission data and thus the interpretation of its magma plumbing system and the contributions of primitive magmas to passive and explosive degassing from the Erebus phonolite lava lake.  相似文献   
354.
The genesis of mineralized systems across the Mountain Freegold area, in the Dawson Range Cu–Au?±?Mo Belt of the Tintina Au province was constrained using Pb and stable isotope compositions and Ar–Ar and Re–Os geochronology. Pb isotope compositions of sulfides span a wide compositional range (206Pb/204Pb, 18.669–19.861; 208Pb/204Pb, 38.400–39.238) that overlaps the compositions of the spatially associated igneous rocks, thus indicating a magmatic origin for Pb and probably the other metals. Sulfur isotopic compositions of sulfide minerals are broadly similar and their δ34S (Vienna-Canyon Diablo Troilite (V-CDT)) values range from ?1.4 to 3.6 ‰ consistent with the magmatic range, with the exception of stibnite from a Au–Sb–quartz vein, which has δ34S values between ?8.1 and ?3.1 ‰. The δ34S values of sulfates coexisting with sulfide are between 11.2 and 14.2 ‰; whereas, those from the weathering zone range from 3.7 to 4.3 ‰, indicating supergene sulfates derived from oxidation of hypogene sulfides. The δ13C (Vienna Peedee Belemnite (VPDB)) values of carbonate range from ?4.9 to 1.1 ‰ and are higher than magmatic values. The δ18O (V-SMOW) values of magmatic quartz phenocrysts and magmatic least-altered rocks vary between 6.2 and 10.1 ‰ and between 5.0 and 10.1 ‰, respectively, whereas altered magmatic rocks and hydrothermal minerals (quartz and magnetite) are relatively 18O-depleted (4.2 to 7.9 ‰ and ?6.3 to 1.5 ‰, respectively). Hydrogen isotope compositions of both least-altered and altered igneous rock samples are D-depleted (from ?133 to ?161 ‰ Vienna-Standard Mean Ocean Water (V-SMOW)), consistent with differential magma degassing and/or post-crystallization exchange between the rocks and meteoric ground water. Zircon from a chlorite-altered dike has a U–Pb crystallization age of 108.7?±?0.4 Ma; whereas, the same sample yielded a whole-rock Ar–Ar plateau age of 76.25?±?0.53 Ma. Likewise, molybdenite Re–Os model ages range from 75.8 to 78.2 Ma, indicating the mineralizing events are genetically related to Late Cretaceous volcano-plutonic intrusions in the area. The molybdenite Re–Os ages difference between the nearby Nucleus (75.9?±?0.3 to 76.2?±?0.3 Ma) and Revenue (77.9?±?0.3 to 78.2?±?0.3 Ma) mineral occurrences suggests an episodic mineralized system with two pulses of hydrothermal fluids separated by at least 2 Ma. This, in combination with geological features suggest the Nucleus deposit represents the apical and younger portion of the Revenue–Nucleus magmatic-hydrothermal system and may suggest an evolution from the porphyry to the epithermal environments.  相似文献   
355.
356.
Recent studies in the Arkhangelsk region, northwest Russia, have identified at least three consecutive tills all associated with the last Valdaian (Weichselian) glaciation. The Scandinavian ice sheet deposited a Late Valdaian till (ca. 17 ka BP), whereas two tills were deposited in the Early–Middle Valdaian by the Barents/Kara Sea ice sheet (ca. 45–60 ka BP) and an older ice sheet with an eastern centre (ca. 74 ka BP). This article expands on previous stratigraphical work on the discrimination of regional till units by a combination of compositional characteristics and directional properties. Tills associated with the Scandinavian ice sheet were deposited by a glacier advancing from west or northwest, transporting predominantly material from the Fennoscandian shield and the White Sea area. The Barents/Kara Sea ice sheet moved from the north and northeast, whereas the oldest ice advance came from the east–southeast. Although, the two oldest tills both contain material with an eastern provenance, the Viryuga Till is dominated more by local carbonate-rich material. This study demonstrates that detailed investigation of till units facilitate the distinction of glacial events imperative for the reconstructing of the last glaciation in northern Russia.  相似文献   
357.
We present an analysis of olivine‐rich exposures at Bellicia and Arruntia craters using Dawn Framing Camera (FC) color data. Our results confirm the existence of olivine‐rich materials at these localities as described by Ammannito et al. ( 2013a ) using Visual Infrared Spectrometer (VIR) data. Analyzing laboratory spectra of various howardite–eucrite–diogenite meteorites, high‐Ca pyroxenes, olivines, and olivine‐orthopyroxene mixtures, we derive three FC spectral band parameters that are indicators of olivine‐rich materials. Combining the three band parameters allows us, for the first time, to reliably identify sites showing modal olivine contents >40%. The olivine‐rich exposures at Bellicia and Arruntia are mapped using higher spatial resolution FC data. The exposures are located on the slopes of outer/inner crater walls, on the floor of Arruntia, in the ejecta, as well as in nearby fresh small impact craters. The spatial extent of the exposures ranges from a few hundred meters to few kilometers. The olivine‐rich exposures are in accordance with both the magma ocean and the serial magmatism model (e.g., Righter and Drake 1997 ; Yamaguchi et al. 1997 ). However, it remains unsolved why the olivine‐rich materials are mainly concentrated in the northern hemisphere (approximately 36–42°N, 46–74°E) and are almost absent in the Rheasilvia basin.  相似文献   
358.
Mature dead-ice has been overridden repeatedly by the Brúarjökull glacier, and multiple generations of ice-cored landforms occur, with ice cores originating at least from glacier surges in 1963-1964, 1890 and 1810. Ice-cores are located on the proximal slopes of end moraines and in the valleys, as ice-cored outwash and eskers, ice-cored drumlins and ice-cored moraine patches. This dictates that the sediments and internal architecture might not always match their end-products as de-icing progresses. Analysis of multi-temporal aerial photographs integrated with annual field measurements showed that the time required for a total de-icing in the forefield exceeds the duration of the quiescent phases between the surges, even in the current climate at the limit of permafrost. Quantifying melting progression suggests that complete de-icing of ice-cored landforms is not likely to occur. The mean de-icing rate is c. 9.8 cm/yr in 1890 ice-cored moraines, and c. 17.7 cm/yr in 1963-1964 ice-cored moraines. Backwasting of ice-cored slopes (c. 30 cm/yr) is the fastest melt process. Long-term downwasting rates derived from multi-temporal digital elevation models provide a superior insight into the impact of multiple glacier surges on the formation of dead-ice moraines in front of Brúarjökull.  相似文献   
359.
Abstract— We performed a comprehensive study of the He, Ne, and Ar isotopic abundances and of the chemical composition of bulk material and components of the H chondrites Dhajala, Bath, Cullison, Grove Mountains 98004, Nadiabondi, Ogi, and Zag, of the L chondrites Grassland, Northwest Africa 055, Pavlograd, and Ladder Creek, of the E chondrite Indarch, and of the C chondrites Hammadah al Hamra 288, Acfer 059, and Allende. We discuss a procedure and necessary assumptions for the partitioning of measured data into cosmogenic, radiogenic, implanted, and indigenous noble gas components. For stone meteorites, we derive a cosmogenic ratio 20Ne/22Ne of 0.80 ± 0.03 and a trapped solar 4He/3He ratio of 3310 ± 130 using our own and literature data. Chondrules and matrix from nine meteorites were analyzed. Data from Dhajala chondrules suggest that some of these may have experienced precompaction irradiation by cosmic rays. The other chondrules and matrix samples yield consistent cosmic‐ray exposure (CRE) ages within experimental errors. Some CRE ages of some of the investigated meteorites fall into clusters typically observed for the respective meteorite groups. Only Bath's CRE age falls on the 7 Ma double‐peak of H chondrites, while Ogi's fits the 22 Ma peak. The studied chondrules contain trapped 20Ne and 36Ar concentrations in the range of 10?6–10?9 cm3 STP/g. In most chondrules, trapped Ar is of type Q (ordinary chondritic Ar), which suggests that this component is indigenous to the chondrule precursor material. The history of the Cullison chondrite is special in several respects: large fractions of both CR‐produced 3He and of radiogenic 4He were lost during or after parent body breakup, in the latter case possibly by solar heating at small perihelion distances. Furthermore, one of the matrix samples contains constituents with a regolith history on the parent body before compaction. It also contains trapped Ne with a 20Ne/22Ne ratio of 15.5 ± 0.5, apparently fractionated solar Ne.  相似文献   
360.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号