首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9375篇
  免费   1682篇
  国内免费   2214篇
测绘学   466篇
大气科学   1907篇
地球物理   2547篇
地质学   4763篇
海洋学   940篇
天文学   522篇
综合类   926篇
自然地理   1200篇
  2024年   52篇
  2023年   163篇
  2022年   417篇
  2021年   473篇
  2020年   418篇
  2019年   509篇
  2018年   566篇
  2017年   484篇
  2016年   569篇
  2015年   462篇
  2014年   604篇
  2013年   518篇
  2012年   485篇
  2011年   569篇
  2010年   540篇
  2009年   497篇
  2008年   457篇
  2007年   474篇
  2006年   354篇
  2005年   290篇
  2004年   281篇
  2003年   279篇
  2002年   292篇
  2001年   260篇
  2000年   302篇
  1999年   387篇
  1998年   332篇
  1997年   335篇
  1996年   278篇
  1995年   241篇
  1994年   288篇
  1993年   219篇
  1992年   167篇
  1991年   129篇
  1990年   104篇
  1989年   77篇
  1988年   98篇
  1987年   50篇
  1986年   45篇
  1985年   41篇
  1984年   36篇
  1983年   33篇
  1982年   35篇
  1981年   27篇
  1980年   7篇
  1979年   10篇
  1978年   5篇
  1975年   2篇
  1958年   7篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
381.
382.
渤海海域自升式钻井平台作业频率高,在同一区块多次插桩作业情况多,为自升式平台插桩作业带来严重的滑移风险。通过建立常用的两种类型桩靴的有限元分析模型,采用模拟计算和对比分析的研究方法,对在“老脚印”不同距离位置插桩时,桩基土体的塑性破坏特性、运移规律及桩靴所受侧向滑移力进行了模拟研究,得出了在不同土质条件下,桩基土和桩靴的受力特性及规律,分析了不同位置的“老脚印“对自升式平台插桩滑移风险的影响。  相似文献   
383.
In geotechnical practice, it is of considerable importance to assess the behavior of vertical–lateral coupled loading piles in multilayered soil deposits. This study deals with a semi-analytical formulation for the performance of a pile suffering from combined vertical and lateral loads. The emphasis is on quantifying the mobilization of the subgrade reaction provided by the layered soil stratums. In the proposed method, subgrade reactions, correlated with both the accumulative axial load transfer and side resistances depending upon the pile–soil interaction, are abstracted as a series of nonlinear springs in both vertical and lateral directions. On account of this, an alternative transfer matrix method is applied to characterize the pile reaction along the depth under the identified boundary conditions atop the pile; meanwhile, the condition of static equilibrium, between two specific pile segments located at the border of soil layers, is also essential. On this basis, validation of the solution is conducted by comparing with observations from experiments and predictions obtained from other existing methods. In addition, the influence of properties in shallow soil layer and the vertical load on the lateral response of the pile is also discussed. The results indicate a reduction in the lateral displacement and the maximum bending moment within the pile with the increase in the shallow soil stiffness, but a growth with the increase in vertical load due to the “P-Δ effect.”  相似文献   
384.
The aim of the study involves examining the effect of heavy oil viscosity on fracture geometry in detail by establishing a heavy oil fracturing model and conventional fracturing model based on thermal–hydraulic–mechanical (THM) coupled theory, Walther viscosity model, and K–D–R temperature model. We consider viscosity and density within the heavy oil fracturing model as functions of pressure and temperature while that as constants within the conventional fracturing model. A heavy oil production well is set as an example to analyze the differences between the two models to account for the thermo-poro-elastic effect. The results show that temperature exhibits the most significant influence on the heavy oil viscosity while the influence of pressure is the least. In addition, a cooling area with a width of 0–1 m and varied length is generated near the fracture. The heavy oil viscosity increases sharply in this area, thereby indicating an area of viscosity increment. The heavy oil viscosity increases faster and is closer to wellbore, and a high viscosity increment reduces the mobility of the heavy oil and prevents the fracturing fluid from entering into the reservoir. The special viscosity distribution results in significant differences in pore pressure, oil saturation, and changing trends between these two models. In the heavy oil reservoir fracturing model, the thermal effect completely exceeds the influence of pore elasticity, and the values of the fracture length, width, and static pressure exceed those calculated in the conventional fracturing model. Thus, a comparison of the measured values indicates that the results obtained by considering viscosity as a function of temperature and pressure are more accurate. Therefore, the results of this study are expected to provide good guidelines for the design of heavy oil fracturing.  相似文献   
385.
In order to study the major ion chemistry and controls of groundwater, 65 groundwater samples were collected and their major ions measured from wells within Lhasa River Basin. Groundwater has the characteristics of slightly alkaline and moderate total dissolved solid (TDS). TDS concentration ranged from 122.0 to 489.9 mg/L with a median value of 271.2 mg/L. Almost all the groundwater samples suited for drinking and irrigation. The major cations of groundwater are Ca2+ and Mg2+, accounting for 59.6 and 31.3% of the cations, respectively. Meanwhile, HCO3? and SO42? constituted about 56.7 and 36.9% of the anions, respectively, in Lhasa River Basin. The hydrochemical type of groundwater is HCO3-SO4-Ca-Mg. The chemical composition of groundwater samples located in the middle of Gibbs model, which indicates that the major chemical process of groundwater is controlled by rock weathering. Carbonate weathering was the dominant hydro-geochemical process controlling the concentration of major ions in groundwater within Lhasa River Basin, but silicate weathering also plays an important role.  相似文献   
386.
In order to improve the accuracy of floor water inrush assessment, the risk prediction model of floor water inrush was established by combining the principal component logistic regression analysis (PCLRA) and GIS spatial geographic analysis. In this paper, the geological data of Pandao coal mine was taken as the engineering background. First of all, main controlling factors of floor water inrush were determined and quantified. Next, PCLRA was used to determine the weight of each factor and establish the mathematical model for predicting the floor water inrush. And then, GIS’s spatial analysis and data processing function was used to draw related single factor thematic maps. Related thematic maps were weighted superposed to draw a floor water inrush zoning map based on PCLRA mathematical model. The study areas were divided into five levels by Jenks optimization method and vulnerability index initial model. And the corresponding threshold range was determined. The results show that (1) the high sensitivity factors in floor failure depth were added to evaluate the water inrush, and the fault fractal dimension was used to replace the fault structure related factors, and the main controlling factors of floor water inrush are more comprehensive; (2) the fitting degree of PCLRA model is high and the test accuracy is 83.3%; (3) the prediction results were well fitted to the actual position of water inrush (three water inrush points are located in the dangerous area, and two water inrush points are located in the relatively dangerous area).  相似文献   
387.
Cracks appeared on the northern batter at Maddingley Brown Coal Open Pit Mine, Victoria, Australia, on 8 November 2013 and a 2-day rainfall event happened 5 days later. This study models the stability of the northern batter considering the effect of the rainfall event and an emergency buttress using finite element method (FEM) encoded in Plaxis 3D. It is found that the batter tended to lead to block sliding after overburden removal. The observed vertical crack would be a combined action of the overburden removal and groundwater flow. The simulated location of cracks agrees well with the actual location, and the simulated heave of the coal seam is in good agreement with the experience in Victoria brown coal open pit mining. The rainfall accelerated the development of the cracks. With the construction of the emergency buttress, the batter became stable that is in good agreement with the monitored data.  相似文献   
388.
389.
随着遥感数据获取技术和能力的全面提高,遥感数据呈现出明显的大数据特征。发展适应于遥感大数据的智能分析和信息挖掘技术,成为当前遥感技术研究的前沿。高分二号(GF-2)卫星数据是我国首颗自主研发的亚米级高分辨率卫星数据,具有观测幅宽、重访周期短、高辐射精度、高定位精度等优势,为未来我国地质灾害的长期、动态地监测和研究提供了高精度、稳定可靠的数据源。本文选取安徽谢桥煤矿2015年1月8日的GF-2卫星影像为研究数据,在对煤矿区主要地质灾害遥感地学分析的基础上,采用面向对象的影像分析方法对研究区由采煤活动所诱发的地质灾害信息进行自动提取。结果表明:利用GF-2卫星数据能够有效地识别地质灾害体的位置、范围、形态等空间分布特征;面向对象的自动提取方法对于煤矿区大面积的积水塌陷盆地、小规模的塌陷坑和线性的地裂缝都有很高的提取精度,识别精度达90% 以上;基于逐层剔除的思路构建的提取规则,为GF-2数据在地质灾害调查和大数据分析中的应用提供了很好的技术支持,也为其它地物目标的提取提供了参考,但在特征的选择和阈值的设定上需要具体分析。  相似文献   
390.
The prediction and prevention of floor water inrush is directly related to the safety of the coal mine production. The previous evaluation method of floor water inrush was more one-sided and lacked main control factors related to mining conditions. In order to evaluate the floor water inrush more accurately, under the project background of geological data of Wanglou coal mine, stope width, mining depth, fault scale index, water pressure, water abundance and thickness of aquifer were selected as main controlling factors of floor water inrush. Combined with the subjective weight analytical hierarchy process and the objective weight variation coefficient method, the weight coefficients corresponding to the main controlling factors were obtained respectively. The thematic map of the risk assessment of coal seam floor water inrush was drawn by combining the constructed comprehensive weight vulnerability index model and geographic information system. The results show that: ① according to the actual geological data of mine, two fault related factors were removed. And stope width and mining depth were increased as the main controlling factors to evaluate floor water inrush. It is easier to compare and calculate the weight of evaluation factors. ② The constructed comprehensive weight vulnerability index model can comprehensively evaluate the risk of floor water inrush. And the results of the evaluation are more accurate. ③ The related thematic maps can directly reflect the risk of floor water inrush, which is of guiding significance for the prediction and prevention of coal seam floor water inrush.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号