首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   12篇
  国内免费   2篇
测绘学   30篇
大气科学   16篇
地球物理   52篇
地质学   35篇
海洋学   5篇
天文学   43篇
综合类   2篇
自然地理   11篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   14篇
  2016年   15篇
  2015年   16篇
  2014年   9篇
  2013年   18篇
  2012年   8篇
  2011年   2篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1991年   8篇
  1990年   4篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1970年   1篇
排序方式: 共有194条查询结果,搜索用时 14 毫秒
11.
12.
The Kodzko Metamorphic Complex (KMC) in the Central Sudetes consists of meta-sedimentary and meta-igneous rocks metamorphosed under greenschist to amphibolite facies conditions. They are comprised in a number of separate tectonic units interpreted as thrust sheets. In contrast to other Lower Palaeozoic volcano-sedimentary successions in the Sudetes, the two uppermost units (the Orla-Googowy unit and the Kodzko Fortress unit) of the KMC contain meta-igneous rocks with supra-subduction zone affinities. The age of the KMC was previously assumed to be Early Palaeozoic–Devonian, based on biostratigraphic findings in the lowermost tectonic unit. Our geochronological study focused on the magmatic rocks from the two uppermost tectonic units, exposed in the SW part of the KMC. Two orthogneiss samples from the Orla-Googowy unit yielded ages of 500.4±3.1 and 500.2±4.9 Ma, interpreted to indicate the crystallization age of the granitic precursors. A plagioclase gneiss from the same tectonic unit, intimately interlayered with metagabbro, provided an upper intercept age of 590.1±7.2 Ma, which is interpreted as the time of igneous crystallization. From the topmost Kodzko Fortress unit, a metatuffite was studied, which contains a mixture of genetically different zircon grains. The youngest 207Pb/206Pb ages, which cluster at ca. 590-600 Ma, are interpreted to indicate the maximum depositional age for this metasediment. The results of this study are in accord with a model that suggests a nappe structure for the KMC, with a Middle Devonian succession at the base and Upper Proterozoic units at structurally higher levels. It is suggested here that the KMC represents a composite tectonic suture that juxtaposes elements of pre-Variscan basement, intruded by the Lower Ordovician granite, against a Middle Palaeozoic passive margin succession. The new ages, combined with the overall geochemical variation in the KMC, indicate the existence of rock assemblages representing a Gondwana active margin. The recognition of Neoproterozoic subduction-related magmatism provides additional arguments for the hypothesis that equivalents of the Teplá-Barrandian domain are exposed in the Central Sudetes.  相似文献   
13.
Western Poland is located in the central European climatic transition zone, which separates the mild and humid Atlantic climate of Western Europe and the East European continental climate. This region is sensitive to lateral shifts of the European climate zones and is particularly suitable for reconstructing Holocene climate variability. This paper presents detailed analyses of the sedimentary record from Lake Strzeszyńskie since the Late Pleistocene. These include smear-slide and thin-section observations, X-ray fluorescence core scanning, magnetic susceptibility measurements, pollen analyses, and radiocarbon dating. The sediment record reveals three distinct sedimentary units consisting of: (1) an alternation of sand layers and laminated silt and clay deposits accumulated prior to 14,600 cal yr BP; (2) faintly laminated calcareous sediments intercalated with organic matter-rich layers deposited between 14,600 and 10,200 cal yr BP; and (3) massive calcareous mud deposited after 10,200 cal yr BP. The Holocene period is marked by nine phases of organic-rich sedimentation and enhanced Fe deposition, which occurred at ca. 10.1, 9.3, 6.4–6.1, 5.5–5.1, 4.7–4.5, 2.7–2.4, 1.3–1.2, 0.8–0.6, 0.4–0.2 kyr cal BP. These phases are associated with high lake levels and correspond with wet periods recognized in several other records from Poland and central Europe. These phases partly coincide with North Atlantic cold periods, which may suggest that high lake levels are triggered by an ocean-continent linking mechanism.  相似文献   
14.
This is a critical assessment of the paper by Oszczypko et al. (2004: Cretaceous Research 25, 89–113), in which they tried to prove a mid-Cretaceous age for the Szlachtowa (“black flysch”) and Opaleniec Formations, in the Pieniny Klippen Belt, West Carpathians, both of which had previously been shown to be of Jurassic age. We argue that the mid-Cretaceous age assignment is a misinterpretation, primarily resulting from their field samples having been collected from some Cretaceous lithostratigraphic units, tectonically associated with the Jurassic formations, and/or from tectonic contact-breccias involving Jurassic and Cretaceous strata. In addition, we suggest that they have overlooked a number of significant palaeontological papers, published since 1962, which record the presence of in situ ammonites, aptychi, belemnites, thin-shelled bivalves (Bositra), gryphaeids, foraminifera, and ostracod assemblages, all indicating a Jurassic (mainly Aalenian), and not a Cretaceous, age for the Szlachtowa Formation, and also the in situ Jurassic (Bajocian) ammonites and thin-shelled bivalves (Bositra), Bositra-microfacies, and age-diagnostic foraminiferal assemblages of the Opaleniec Formation.Our presentation here of recently published dinocyst data from well-preserved assemblages further supports the Jurassic ages for the Szlachtowa (“black flysch”) and Opaleniec Formations.  相似文献   
15.
Displacements of the Earth’s surface caused by tidal and non-tidal loading forces are relevant in high-precision space geodesy. Some of the corrections are recommended by the international scientific community to be applied at the observation level, e.g., ocean tidal loading (OTL) and atmospheric tidal loading (ATL). Non-tidal displacement corrections are in general recommended not to be applied in the products of the International Earth Rotation and Reference Systems Service, in particular atmospheric non-tidal loading (ANTL), oceanic and hydrological non-tidal corrections. We assess and compare the impact of OTL, ATL and ANTL on SLR-derived parameters by reprocessing 12 years of SLR data considering and ignoring individual corrections. We show that loading displacements have an influence not only on station long-term stability, but also on geocenter coordinates, Earth Rotation Parameters, and satellite orbits. Applying the loading corrections reduces the amplitudes of annual signals in the time series of geocenter and station coordinates. The general improvement of the SLR station 3D coordinate repeatability when applying OTL, ATL and ANTL corrections are 19.5 %, 0.2 % and 3.3 % respectively, w.r.t. the solutions without loading corrections. ANTL corrections play a crucial role in the combination of optical (SLR) and microwave (GNSS, VLBI, DORIS) space geodetic observation techniques, because of the so-called Blue-Sky effect: SLR measurements can be carried out only under cloudless sky conditions—typically during high air pressure conditions, when the Earth’s crust is deformed, whereas microwave observations are weather-independent. Thus, applying the loading corrections at the observation level improves SLR-derived products as well as the consistency with microwave-based results. We assess the Blue-Sky effect on SLR stations and the consistency improvement between GNSS and SLR solutions when ANTL corrections are included. The omission of ANTL corrections may lead to inconsistencies between SLR and GNSS solutions of up to 2.5 mm for inland stations. As a result, the estimated GNSS–SLR coordinate differences correspond better to the local ties at the co-located stations when applying ANTL corrections.  相似文献   
16.
17.
We report the first occurrence of moldavites in Poland. This discovery confirms the hypothesis that moldavites could have been distributed up to 500 km from the Ries crater in Germany. The tektites were reworked from Middle Miocene sediments and redeposited in Late Miocene (Pannonian) fluvial deposits of the Gozdnicka Formation in Lower Silesia. The Polish moldavites are represented by nine (<8 mm) fragments with a total of 0.471 g. The lack of the autochthonous tektites indicates that tektites investigated here had to be redeposited in a fluvial environment, probably from the Lusatian area. The chemical composition of the Polish moldavites plots in the same area with those from other localities.  相似文献   
18.
Big Data, Linked Data, Smart Dust, Digital Earth, and e‐Science are just some of the names for research trends that surfaced over the last years. While all of them address different visions and needs, they share a common theme: How do we manage massive amounts of heterogeneous data, derive knowledge out of them instead of drowning in information, and how do we make our findings reproducible and reusable by others? In a network of knowledge, topics span across scientific disciplines and the idea of domain ontologies as common agreements seems like an illusion. In this work, we argue that these trends require a radical paradigm shift in ontology engineering away from a small number of authoritative, global ontologies developed top‐down, to a high number of local ontologies that are driven by application needs and developed bottom‐up out of observation data. Similarly as the early Web was replaced by a social Web in which volunteers produce data instead of purely consuming it, the next generation of knowledge infrastructures has to enable users to become knowledge engineers themselves. Surprisingly, existing ontology engineering frameworks are not well suited for this new perspective. Hence, we propose an observation‐driven ontology engineering framework, show how its layers can be realized using specific methodologies, and relate the framework to existing work on geo‐ontologies.  相似文献   
19.
We present a semi-analytical hydrodynamical model for the structure of reconfinement shocks formed in astrophysical relativistic jets interacting with external medium. We take into account exact conservation laws, both across the shock front and in the zone of the shocked matter, and exact angular relations. Our results confirm a good accuracy of the approximate formulae derived by Komissarov & Falle. However, including the transverse pressure gradient in the shocked jet, we predict an absolute size of the shock to be about twice larger. We calculate the efficiency of the kinetic energy dissipation in the shock and show a strong dependence on both the bulk Lorentz factor and opening angle of the jet.  相似文献   
20.
We investigate the dynamics of putative Earth-mass planets in the habitable zone (HZ) of the extrasolar planetary system OGLE-2006-BLG-109L, a close analogue of the Solar system. Our work is inspired by the work of Malhotra & Minton. Using the linear Laplace–Lagrange theory, they identified a strong secular resonance that may excite large eccentricity of orbits in the HZ. However, due to uncertain or unconstrained orbital parameters, the subsystem of Jupiters may be found in a dynamically active region of the phase space spanned by low-order mean-motion resonances. To generalize this secular model, we construct a semi-analytical averaging method in terms of the restricted problem. The secular orbits of large planets are approximated by numerically averaged osculating elements. They are used to calculate the mean orbits of terrestrial planets by means of a high-order analytic secular theory developed in our previous works. We found regions in the parameter space of the problem in which stable, quasi-circular orbits in the HZ are permitted. The excitation of eccentricity in the HZ strongly depends on the apsidal angle of jovian orbits. For some combinations of that angle, eccentricities and semimajor axes consistent with the observations, a terrestrial planet may survive in low eccentric orbits. We also study the effect of post-Newtonian gravity correction on the innermost secular resonance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号