首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28571篇
  免费   285篇
  国内免费   984篇
测绘学   1773篇
大气科学   2373篇
地球物理   5414篇
地质学   13037篇
海洋学   1190篇
天文学   2484篇
综合类   2203篇
自然地理   1366篇
  2023年   23篇
  2022年   67篇
  2021年   79篇
  2020年   92篇
  2019年   85篇
  2018年   4869篇
  2017年   4143篇
  2016年   2842篇
  2015年   417篇
  2014年   385篇
  2013年   407篇
  2012年   1192篇
  2011年   2873篇
  2010年   2154篇
  2009年   2460篇
  2008年   2029篇
  2007年   2446篇
  2006年   175篇
  2005年   289篇
  2004年   464篇
  2003年   464篇
  2002年   322篇
  2001年   100篇
  2000年   117篇
  1999年   78篇
  1998年   73篇
  1997年   57篇
  1996年   37篇
  1995年   40篇
  1994年   57篇
  1993年   45篇
  1992年   42篇
  1991年   61篇
  1990年   44篇
  1989年   54篇
  1988年   55篇
  1987年   69篇
  1986年   53篇
  1985年   52篇
  1984年   73篇
  1983年   66篇
  1982年   45篇
  1981年   50篇
  1980年   55篇
  1979年   26篇
  1978年   28篇
  1976年   25篇
  1974年   23篇
  1973年   22篇
  1972年   29篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
Cr-spinel bearing wehrlite rocks of Bangriposi are found within the multiply deformed metasedimentary rocks of Singhbhum Group belonging to North Singhbhum Mobile Belt of eastern India. Detailed mineralogical and geochemical studies reveal that these rocks have suffered a two-stage alteration involving a deeper level modal and cryptic metasomatism and a subsequent shallower depth pervasive hydrothermal alteration. Cryptic metasomatism is defined by elevated LREE contents of the wehrlite and its clinopyroxne grains. Metasomatism induced changes in the modal mineralogy of the rocks include the absence of primary orthopyroxene grains, presence of secondary diopside-phlogopite(now present as vermiculite) defining disequilibrium reaction textures and secondary orthopyroxene rims around serpentinized olivine. The mineralogical and geochemical changes due to the metasomatic event present a contrasting picture in regard to the metasomatic history of the rocks. Possible scenarios involving a single stage or multiple stage metasomatism events have been discussed while explaining the metasomatic reactions that took place. An attempt has been made to estimate the REE concentrations of the final equilibrating melt from REE contents of clinopyroxene grains of the wehrlite. The possibility of the LREE-enriched equilibrating melt of the wehrlite rocks(the deeper level metasomatic agent) being similar to residual melts from the E-MORB type parental melts of nearby gabbro suite has been ruled out by geochemical modeling. REE abundance patterns of several natural enriched melts have been compared with REE pattern of calculated LREE-enriched equilibrating melt of the wehrlite and most resemblance has been observed with calcic and potassic melts. It is therefore suggested that the Cr-spinel bearing wehrlite rocks of Bangriposi has been affected by a calcio-potassic melt in deeper level, prior to the shallow level serpentinization event.  相似文献   
992.
We study the fragmentation properties in the protoplanetary disk and properties of the resultant self-gravitating clumps using our newly constructed disk model. Our disk model includes the mass inflall term from a molecular cloud core and the photoevaporation winds effect. We adopt the conventional fragmentation criterion to judge whether a protoplanetary disk can fragment. In this work, we follow our previous work to investigate the properties of the resultant self-gravitating clumps. In our calculation, the initial masses of the resultant self-gravitating clumps lie in the range of tens of MJ to more than one hundred of MJ, where MJ is the Jupiter mass. These initial masses can seemingly account for the masses of extrasolar planets in magnitude. We also calculate the subsequent gas accretion of clumps in 1.27 × 104 yr after the formation of self-gravitating clumps. We find that the subsequent gas accretion of self-gravitating clumps is very efficient, and the clump masses grow to hundreds of MJ and the physical radii Rc of clumps increase to about 10 AU. Additionally, we also calculate the orbital migration of clumps. We find that most clumps have short migration timescale to be accreted onto the protostar, and only a small fraction of clumps have long migration timescale (>106 yr) to successfully become gas giant planets. These results are consistent with previous studies.  相似文献   
993.
This paper analyzes the adjoint equations and boundary conditions for porous media flow models, specifically the Buckley-Leverett equation, and the compressible two-phase flow equations in mass conservation form. An adjoint analysis of a general scalar hyperbolic conservation law whose primal solutions include a shock jump is initially presented, and the results are later specialized to the Buckley-Leverett equation. The non-convexity of the Buckley-Leverett flux function results in adjoint characteristics that are parallel to the shock front upstream of the shock and emerge from the shock front downstream of the shock. Thus, in contrast to the behavior of Burgers’ equation where the adjoint is continuous at a shock, the Buckley-Leverett adjoint, in general, contains a discontinuous jump across the shock. Discrete adjoint solutions from space-time discontinuous Galerkin finite element approximations of the Buckley-Leverett equation are shown to be consistent with the derived closed-form analytical solutions. Furthermore, a general result relating the adjoint equations for different (though equivalent) primal equations is used to relate the two-phase flow adjoints to the Buckley-Leverett adjoint. Adjoint solutions from space-time discontinuous Galerkin finite element approximations of the two-phase flow equations are observed to obey this relationship.  相似文献   
994.
Hydrocarbon reservoir modelling and characterisation is a challenging subject within the oil and gas industry due to the lack of well data and the natural heterogeneities of the Earth’s subsurface. Integrating historical production data into the geo-modelling workflow, commonly designated by history matching, allows better reservoir characterisation and the possibility of predicting the reservoir behaviour. We present herein a geostatistical-based multi-objective history matching methodology. It starts with the generation of an initial ensemble of the subsurface petrophysical property of interest through stochastic sequential simulation. Each model is then ranked according the match between its dynamic response, after fluid flow simulation, and the observed available historical production data. This enables building regionalised Pareto fronts and the definition of a large ensemble of optimal subsurface Earth models that fit all the observed production data without compromising the exploration of the uncertainty space. The proposed geostatistical multi-objective history matching technique is successfully implemented in a benchmark synthetic reservoir dataset, the PUNQ-S3, where 12 objectives are targeted.  相似文献   
995.
This paper presents a novel mass-conservative mixed multiscale method for solving flow equations in heterogeneous porous media. The media properties (the permeability) contain multiple scales and high contrast. The proposed method solves the flow equation in a mixed formulation on a coarse grid by constructing multiscale basis functions. The resulting velocity field is mass-conservative on the fine grid. Our main goal is to obtain first-order convergence in terms of the mesh size which is independent of local contrast. This is achieved, first, by constructing some auxiliary spaces, which contain global information that cannot be localized, in general. This is built on our previous work on the generalized multiscale finite element method (GMsFEM). In the auxiliary space, multiscale basis functions corresponding to small (contrast-dependent) eigenvalues are selected. These basis functions represent the high-conductivity channels (which connect the boundaries of a coarse block). Next, we solve local problems to construct multiscale basis functions for the velocity field. These local problems are formulated in the oversampled domain, taking into account some constraints with respect to auxiliary spaces. The latter allows fast spatial decay of local solutions and, thus, allows taking smaller oversampled regions. The number of basis functions depends on small eigenvalues of the local spectral problems. Moreover, multiscale pressure basis functions are needed in constructing the velocity space. Our multiscale spaces have a minimal dimension, which is needed to avoid contrast dependence in the convergence. The method’s convergence requires an oversampling of several layers. We present an analysis of our approach. Our numerical results confirm that the convergence rate is first order with respect to the mesh size and independent of the contrast.  相似文献   
996.
Grid generation for reservoir simulation must honor classical key constraints and be boundary aligned such that control-volume boundaries are aligned with geological features such as layers, shale barriers, fractures, faults, pinch-outs, and multilateral wells. An unstructured grid generation procedure is proposed that automates control-volume and/or control point boundary alignment and yields a PEBI-mesh both with respect to primal and dual (essentially PEBI) cells. In order to honor geological features in the primal configuration, we introduce the idea of protection circles, and to generate a dual-cell feature based grid, we construct halos around key geological features. The grids generated are employed to study comparative performance of cell-centred versus cell-vertex control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulations using equivalent degrees of freedom. The formulation of CVD-MPFA schemes in cell-centred and cell-vertex modes is analogous and requires switching control volume from primal to dual or vice versa together with appropriate data structures and boundary conditions. The relative benefits of both types of approximation, i.e., cell-centred versus vertex-centred, are made clear in terms of flow resolution and degrees of freedom required.  相似文献   
997.
In the development of naturally fractured reservoirs (NFRs), the existence of natural fractures induces severe fingering and breakthrough. To manage the flooding process and improve the ultimate recovery, we propose a numerical workflow to generate optimal production schedules for smart wells, in which the inflow control valve (ICV) settings can be controlled individually. To properly consider the uncertainty introduced by randomly distributed natural fractures, the robust optimization would require a large ensemble size and it would be computationally demanding. In this work, a hierarchical clustering method is proposed to select representative models for the robust optimization in order to avoid redundant simulation runs and improve the efficiency of the robust optimization. By reducing the full ensemble of models into a small subset ensemble, the efficiency of the robust optimization algorithm is significantly improved. The robust optimization is performed using the StoSAG scheme to find the optimal well controls that maximize the net-present-value (NPV) of the NFR’s development. Due to the discrete property of a natural fracture field, traditional feature extraction methods such as model-parameter-based clustering may not be directly applicable. Therefore, two different kinds of clustering-based optimization methods, a state-based (e.g., s w profiles) clustering and a response-based (e.g., production rates) clustering, are proposed and compared. The computational results show that the robust clustering optimization could increase the computational efficiency significantly without sacrificing much expected NPV of the robust optimization. Moreover, the performance of different clustering algorithms varies widely in correspondence to different selections of clustering features. By properly extracting model features, the clustered subset could adequately represent the uncertainty of the full ensemble.  相似文献   
998.
In this paper, we study newly developed methods for linear elasticity on polyhedral meshes. Our emphasis is on applications of the methods to geological models. Models of subsurface, and in particular sedimentary rocks, naturally lead to general polyhedral meshes. Numerical methods which can directly handle such representation are highly desirable. Many of the numerical challenges in simulation of subsurface applications come from the lack of robustness and accuracy of numerical methods in the case of highly distorted grids. In this paper, we investigate and compare the Multi-Point Stress Approximation (MPSA) and the Virtual Element Method (VEM) with regard to grid features that are frequently seen in geological models and likely to lead to a lack of accuracy of the methods. In particular, we look at how the methods perform near the incompressible limit. This work shows that both methods are promising for flexible modeling of subsurface mechanics.  相似文献   
999.
Free surface flow of an incompressible fluid over a shallow plane/undulating horizontal bed is characteristically turbulent due to disturbances generated by the bed resistance and other causes. The governing equations of such flows in one dimension, for finite amplitude of surface elevation over the bed, are the Continuity Equation and a highly nonlinear Momentum Equation of order three. The method developed in this paper introduces the “discharge” variable q = η U, where η = elevation of the free surface above the bed level, and U = average stream-wise forward velocity. By this substitution, the continuity equation becomes a linear first-order PDE and the momentum equation is transformed after introduction of a small approximation in the fifth term. Next, it is shown by an invertibility argument that q can be a function of η: q = F(η), rendering the momentum equation as a first order, second degree ODE for F(η), that can be be integrated by the Runge-Kutta method. The continuity equation then takes the form of a first order evolutionary PDE that can be integrated by a Lax-Wendroff type of scheme for the temporal evolution of the surface elevation η. The method is implemented for two particular cases: when the initial elevation is triangular with vertical angle of 120 ° and when it has a sinusoidal form. The computations exhibit the physically interesting feature that the frontal portion of the propagating wave undergoes a sharp jump followed by tumbling over as a breaker. Compared to other discretization methods, the application of the Runge-Kutta and an extended version of the Lax-Wendroff scheme is much easier.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号