首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   13篇
  国内免费   8篇
大气科学   10篇
地球物理   85篇
地质学   102篇
海洋学   48篇
天文学   56篇
自然地理   20篇
  2024年   3篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   10篇
  2017年   7篇
  2016年   8篇
  2015年   6篇
  2014年   9篇
  2013年   12篇
  2012年   11篇
  2011年   17篇
  2010年   14篇
  2009年   21篇
  2008年   20篇
  2007年   17篇
  2006年   10篇
  2005年   16篇
  2004年   11篇
  2003年   10篇
  2002年   9篇
  2001年   6篇
  2000年   10篇
  1999年   7篇
  1998年   6篇
  1997年   6篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   5篇
  1971年   1篇
  1970年   1篇
排序方式: 共有321条查询结果,搜索用时 15 毫秒
61.
We have studied the paleomagnetism of the middle Cretaceous Iritono granite of the Abukuma massif in northeast Japan together with 40Ar–39Ar dating. Paleomagnetic samples were collected from ten sites of the Iritono granite (102 Ma 40Ar–39Ar age) and two sites of its associated gabbroic dikes. The samples were carefully subjected to alternating field and thermal demagnetizations and to rock magnetic analyses. Most of natural remanent magnetizations show mixtures of two components: (1) H component, high coercivity (Bc > 50–90 mT) or high blocking temperature (Tb > 350–560 °C) component and (2) L component, relatively low Bc or low Tb component. H component was obtained from all the 12 sites to give a mean direction of shallow inclination and northwesterly declination (I = 29.9°, D = 311.0°, α95 = 2.7°, N = 12). This direction is different from the geocentric axial dipole field at the present latitude (I = 56.5°) and the typical direction of the Cenozoic remagnetization in northeast Japan. Since rock magnetic properties indicate that the H component of the Iritono granite is carried mainly by magnetite inclusions in plagioclase, this component probably retains a primary one. Thus the shallow inclination indicates that the Abukuma massif was located at a low latitude (16.1 ± 1.6°N) about 100 Ma and then drifted northward by about 20° in latitude. The northwesterly deflection is attributed mostly to the counterclockwise rotation of northeast Japan due to Miocene opening of the Japan Sea. According to this model, the low-pressure and high-temperature (low-P/high-T) metamorphism of the Abukuma massif, which has been well known as a typical location, would have not occurred in the present location. On the other hand, the L component is carried mainly by pyrrhotite and its mean direction shows a moderate inclination and a northwesterly declination (I = 42.8°, D = 311.5°, α95 = 3.3°, N = 9). Since this direction is intermediate between the H component and early Cenozoic remagnetization in northeast Japan, some thermal event would have occurred at lower temperature than pyrrhotite Curie point ( 320 °C) during the middle Cretaceous to early Cenozoic time to have resulted in partial remagnetization.  相似文献   
62.
Young (6 Ma) alkali-basalts were collected from the toe of the oceanward slope of the northern Japan Trench. Two types of olivine are present in these lavas, xenocrysts with reaction rims and magmatic. The forsterite (Fo) (no. 91–92) values and NiO contents (0.3–0.5 wt%) of the xenocrysts are similar in composition to those of the depleted mantle peridotite. The groundmass olivines have relatively lower Fo values (no. 81–88) and NiO contents (0.1–0.5 wt%). Reaction rims and the vicinity of the silicate inclusion in xenocrysts show the intermediate compositions between the xenocryst and magmatic olivines. Chromian spinel inclusions in the xenocrysts also show the depleted composition in the range of abyssal peridotite. CO2 fluid inclusions in the xenocryst records pressures before entrainment into the host magma up to 0.4 GPa, which corresponds to a depth of up to 14 km of lithospheric mantle. These data indicate that the xenocrysts originate from MORB-depleted mantle.  相似文献   
63.
Takashikozo is a phenomenon of Quaternary sediments in Japan. They are cylindrical Fe-oxyhydroxide nodules that form as plaques round plant roots, where Fe is preferentially concentrated to develop a solid wall. Structural features suggest that after the roots have decayed, the central space where the roots were situated acts as a flow path for oxidized water. Analysis of microbial 16S rDNA extracted from the nodules identified iron-oxidizing bacteria encrusted round the roots where they are the likely initiators of nodule formation. Direct microscopic observation revealed an accumulation of Fe-oxyhydroxides that fill the pore spaces and is also likely to be linked with the encrusting microbial colonies. Geological history and nanofossil evidence suggest that these Fe-nodules may have been buried at a depth of up to several tens of meters for at least 105 years in reducing Quaternary sediments. Thus Fe-oxyhydroxide nodules that have formed in a geological environment at the interfaces between water and rock by microbial mediation can persist under reducing conditions. If this is the case, the phenomenon is significant as an analogue of post-closure conditions in radioactive waste repositories, since it could influence nuclide migration.  相似文献   
64.
A damper system that absorbs energy over a wide range of displacement amplitudes during building vibration was proposed. This system uses a serial connection of a metallic yielding component and viscoelastic damper with a displacement limit mechanism. Three types of the system were developed and tested: a diagonal bracing type, inverted V bracing type, and wall type. The test results showed that all these systems have damping ratios higher than 8% at small vibration amplitudes on the order of 0.1 mm. For a large vibration, a displacement limit mechanism with two pins limited the displacement of the viscoelastic damper as designed. Analytical simulations established that the system reduced the acceleration and the story drift to 60–70% and 80%, respectively, during a small earthquake compared with a conventional metallic yielding damper system. Furthermore, it showed an equivalent control performance during a severe earthquake. The damper system requires that a clearance be maintained for the displacement limit mechanism. However, this may be lost through construction error, residual displacement after an earthquake, and temperature effects. The changes in the clearance due to these effects were discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
65.
The 2.9-Ma Hotokezawa Ignimbrite, which was ejected from the Aizu caldera cluster in the northeast Japan arc, is a typical monotonous intermediate ignimbrite, with 40–50 vol% crystals and an eruptive volume of >140 km3 dense-rock equivalent. This ignimbrite filled Hiwada caldera and was deformed by post-caldera plutonic intrusions that formed a resurgent dome. The Hotokezawa Ignimbrite is a calc-alkaline, medium-K dacite to rhyolite with SiO2 contents of 67.9–71.3 wt%, and has homogeneous trace-element abundances and Sr–Nd isotopic ratios. These geochemical features suggest that the Hotokezawa magma was formed by partial melting of amphibolitic crustal rocks. This crystal-rich magma did not appear during the post-caldera stage. Therefore, it is plausible that the chamber of eruptible magma was emptied by the caldera-forming eruption. In contrast, post-caldera plutonic rocks exhibit a variety of compositions and have a clear SiO2 gap corresponding to the caldera-forming magma: the early pluton (tonalite) and later ones (quartz porphyry, granite porphyries, and granite) contain 62.0–66.6 and 71.2–76.5 wt% SiO2, respectively. The tonalite and the Hotokezawa Ignimbrite form a continuous trend in their major-element variations. The Sr–Nd isotopic ratios of the ignimbrite and tonalite overlap, but those of the porphyries and granite are more enriched. The early tonalite represents the more basic part of the Hiwada caldera system that was held in small pockets separate from the main magma chamber, because its trace-element abundances are varied and distinct from those of the Hotokezawa Ignimbrite. The distinct compositional change from the Hotokezawa Ignimbrite to the late porphyries and granite indicates that the partial melting crust generating felsic magma was renewed by the subsequent intrusion of the mantle melts. The new felsic magma ascended through subsidence-related faults into the shallow caldera system and emplaced as laccoliths forming the resurgent dome.  相似文献   
66.
Chausudake Volcano is representative of the active volcanoes in northeastern Japan, and has a record of many historical eruptions. Because its 16-ky eruptive history is well documented, Chausudake is well-suited for examining the temporal change of magma chamber processes and for assessing potential hazards. The activity of the Chausudake Volcano can be divided into six magmatic units (CH1-CH6). Most of its products have similar characteristics, but those from unit CH1 show wider variation. Most rocks are andesite and have plagioclase, clinopyroxene, orthopyroxene, and Fe-Ti oxides as phenocrysts, with or without olivine or quartz. Mafic inclusions, which are observed in most products, are basaltic andesites that have various combinations of the same phenocryst species. Petrographic features observed in host rocks and mafic inclusions, such as disequilibrium phenocrysts and resorbed textures, suggest magma mixing/co-mingling. Whole rock compositions of both host rocks and mafic inclusions show linear trends in variation diagrams, which suggest that the rocks are derived from the mixing/co-mingling between mafic and felsic end members. Bulk silica content of the mafic end-member magma is estimated to be ca. 52%, and contains Mg-rich olivine and An-rich plagioclase. The temperature of this end member is estimated to have been higher than 1,100 °C. Bulk silica content of the felsic end-member magma is estimated to be ~66%, and contains Mg-poor pyroxenes, An-poor plagioclase, and quartz phenocrysts, with a temperature of between 800 and 900 °C. Trace element compositions show that the end members have different origins, but have changed little over the entire 16-ky of activity. The mafic end-member magmas might come from a lower-crustal homogeneous, large magma chamber, whereas the felsic end-member magmas may be partial melts of crustal materials produced by the heat of the mafic end member. Felsic end-member magma may have accumulated in the middle crust before CH1 activity. The mixing ratio of the felsic to mafic end members was 0.5:0.5 to 0.4:0.6 for the CH1 unit, and ca. 0.4:0.6 for the other units. Considering that ca. 75% of the total volume of the eruptive products form the first unit, its wider compositional variation is attributed to more heterogeneous mixing ratios.  相似文献   
67.
The volcanogenic massive sulfide deposit of Filon Norte at Tharsis is hosted by carbonaceous black slate and connected only partly with stockwork veins. The massive ores are usually composed of fine-grained pyrite with subordinate amounts of sphalerite, chalcopyrite, galena and arsenopyrite. Monoclinic pyrrhotite sometimes occurs in massive pyritic ores in the apparently middle and upper horizons of the orebody, and siderite-rich ores are interstratified with compact pyritic ores in the apparently lower horizons. From the occurrence of monoclinic pyrrhotite, together with the FeS contents of sphalerite mostly ranging from 11 to 16 mol %, it is inferred that the sulfide minerals of the massive orebody were precipitated in euxinic muds on the sea-floor at temperatures below 250°C. The negatively shifted, highly variable 34S values of the massive ores and their close similarity to those of the underlying black slates strongly suggest that the sulfide sulfur of the massive orebody and the slates is cognate and biogenic.  相似文献   
68.
Models of acceleration of auroral electrons by electrostatic shock waves are considered based on the model electron beam, calculated by Evans (1974), to account for the observed precipitating electron fluxes. Electron populations in our models include a primary accelerated beam, originating from the plasma sheet, the secondary electrons and the energy-degraded and backscattered primary electrons produced by precipitating electrons of that beam. We find a feasible electrostatic shock model with appropriate ion populations from considerations on the conditions for the existence of shock solutions.  相似文献   
69.
An asymmetric-top free radical CH2CN, which as a 2B1 ground state, was detected for the first time by laboratory microwave spectroscopy. The radical was produced in a free-space absorption cell by a DC glow discharge in pure CH3CN gas. About 60 fine-structure components were observed for the N = 11-10 to 14-13 a-type rotational transitions in the frequency region of 220-260 GHz, and many hyperfine resolved components for the N = 4-3 and 5-4 transitions in the 80 and 100 GHz regions, respectively. The molecular constants, including the rotational constants, centrifugal distortion constants, and spin-rotation coupling constants with centrifugal distortion correction terms were determined from the fine-structure resolved transitions, and the hyperfine coupling constants due to the hydrogen and nitrogen nuclei were obtained from the low-N transitions. As a result we assigned U100602 and U80484 from Sgr B2, and U40240 and U20120 from TMC-1, to the N = 5-4, 4-3, 2-1, and 1-0 transitions with K-1 = 0 of the CH2CN radical.  相似文献   
70.
The pattern of the ionospheric electric field around the westward travelling surge (WTS) is theoretically studied. This is obtained by solving the current continuity equation at the ionospheric altitude for temporal and spatial development of the field-aligned current density modelled as the WTS phenomenon. The results show that the divergence of the ionospheric electric field is significantly changed depending on the dawn-to-dusk convection electric field E0 because of non-uniformity in the ionospheric conductivity: the ionospheric electric field diverges in the upward current region (around the head of the WTS) when a westward electric field E0 of 10 mV m−1 is uniformly applied. On the other hand, the ionospheric electric field converges without E0. From the observational inference that the ionospheric electric field converges around the head of the WTS, it is suggested that the WTS phenomenon may not be accounted for by the discharging process in the presence of the enhanced dawn-to-dusk convection electric field and non-uniform conductivity as was studied by previous authors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号