首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   1篇
地质学   6篇
海洋学   6篇
  2023年   1篇
  2018年   3篇
  2013年   1篇
  2006年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1994年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有13条查询结果,搜索用时 359 毫秒
11.
In order to validate wind vectors derived from the NASA Scatterometer (NSCAT), two NSCAT wind products of different spatial resolutions are compared with observations by buoys and research vessels in the seas around Japan. In general, the NSCAT winds agree well with the wind data from the buoys and vessels. It is shown that the root-mean-square (rms) difference between NSCAT-derived wind speeds and the buoy observations is 1.7 ms–1, which satisfies the mission requirement of accuracy, 2 ms–1. However, the rms difference of wind directions is slightly larger than the mission requirement, 20°. This result does not agree with those of previous studies on validation of the NSCAT-derived wind vectors using buoy observations, and is considered to be due to differences in the buoy observation systems. It is also shown that there are no significant systematic trends of the NSCAT wind speed and direction depending on the wind speed and incidence angle. Comparison with ship winds shows that the NSCAT wind speeds are lower than those observed by the research vessels by about 0.7 ms–1 and this bias is twice as large for data observed by moving ships than by stationary ships. This result suggests that the ship winds may be influenced by errors caused by ship's motion, such as pitching and rolling.  相似文献   
12.
We investigated the phase difference and the cross correlation coefficient between the band-pass filtered biennial variations of sea surface temperature (SST) and air-sea heat flux estimated by the monthly mean 2°×2° satellite data of Advanced Very High Resolution Radiometer (AVHRR) and Special Sensor Microwave/Imager (SSM/I) from July 1987 to June 1991. Judging from the phase difference, it can be determined whether the biennial variation of SST is controlled by local thermal air-sea interaction or oceanic processes of horizontal transport. When the local air-sea heat flux controls the biennial variation of SST, the phase of SST advances /2 (6 months) against that of the air-sea heat flux. In contrast, when the biennial variation of SST is controlled by the oceanic process, the phase difference between the SST and the air-sea heat flux becomes 0 or (12 months). In this case, two types of the phase differences are determined, depending on which variability of SST and air-sea heat flux is larger. The close thermal air-sea interaction is noticeable in the tropics and in the western boundary current region. The phase difference of /2 appears mainly in the north Pacific, the southeast Indian Ocean, and the western tropical Pacific; zero in the eastern tropical Pacific and the northeast and equatorial Atlantic; and that of in the central equatorial Pacific and north of the intertropical convergence zone (ITCZ) of the Atlantic. Phase differences of 0, , or /2 are possible in the western boundary current regions. This fact indicates that each current plays a different role to the biennial variation of SST. It is inferred that SST anomalies in the tropics are mutually correlated, and the process in which marked SST anomalies in the tropics are transferred to the remote area was probed. In the equatorial Pacific, the SST anomaly is transferred by the long planetary wave. On the other hand, it is found from the phase relationship and the horizontal correlation of SST that the SST anomaly in the central and western equatorial Pacific is connected through atmospheric mediation. It is suggested that the biennial variation of SST in the eastern Indian Ocean is affected by heat transport due to the Indonesian throughflow from the western tropical Pacific. It is found that the mentioned pattern of the interannual variation of SST in the tropical Atlantic as a dipole is not tenable.  相似文献   
13.
In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号