首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   9篇
  国内免费   6篇
测绘学   4篇
大气科学   9篇
地球物理   64篇
地质学   53篇
海洋学   29篇
天文学   50篇
自然地理   8篇
  2022年   3篇
  2021年   2篇
  2019年   4篇
  2018年   15篇
  2017年   4篇
  2016年   10篇
  2015年   5篇
  2014年   4篇
  2013年   10篇
  2012年   11篇
  2011年   7篇
  2010年   7篇
  2009年   12篇
  2008年   7篇
  2007年   6篇
  2006年   15篇
  2005年   7篇
  2004年   6篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1973年   5篇
  1972年   2篇
  1971年   5篇
  1970年   4篇
  1969年   3篇
  1968年   2篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
101.
Koichi  Aoyagi Mamoru  Omokawa 《Island Arc》1993,2(4):273-279
Abstract Various siliceous rocks are found in the Ohdoji, Akaishi and Maido Formations from the western Aomori basin, and the Yotsuzawa and Wadagawa Formations from the eastern Aomori basin of northern Honshu, Japan. These rocks are classified into diatomite, siliceous shale and chert.
Diatomite is composed of abundant amorphous silica and has porosity between 50 and 65%. Siliceous shale is composed of a large amount of quartz, and has porosity ranging from 25 to 35%. Chert is chiefly composed of cristobalite or quartz, and has porosity between 20 to 30%.
Average contents of total organic carbon, S1 and S2 generally increase from argillaceous rocks → diatomites → siliceous shales → cherts. Maturation of organic matter in these rocks is generally lower than that in average source rocks. Diatoms, which appeared in the late Cretaceous and became increasingly important in the Miocene, are the principal primary producers of organic matter in the marine environment during the Cenozoic. Excellent organic components and higher biological productivity show that diatoms might be the most important source of petroleum during the Neogene in Japan.
Proteins, carbohydrates and lipids in diatoms have been transformed into fulvic acids, humic acids and humin by polycondensation and polymerization. Later, these humin materials could be changed into insoluble kerogen under the effect of mild temperature and pressure. A part of the lipids would transform to geochemical fossils (biomarkers). Amorphous silica in cells of diatoms would change to low-cristobalite and low-quartz by the increase of geothermal temperature.  相似文献   
102.
103.
104.
To evaluate the overall response of a structural system including its foundation and surrounding soil, an equivalent finite element model with reduced degrees of freedom using fibre theory‐based beam element was proposed. The proposed model was based on investigations of the subgrade soil reaction of a single‐layer model, and was verified for the cyclic behaviour of a laterally loaded single RC pile in terms of the load–displacement relationship, pile deformation, and soil pressures on the pile surface. Also investigated was the effect of the interfacial element between pile and soil on the behaviour of the laterally loaded pile. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
105.
106.
Bacteria appeared early in the evolution of cellular life on planet Earth, and therefore the universally essential genes or biological pathways found across bacterial domains may represent fundamental genetic or cellular systems used in early life. The essential genes and the minimal gene set required to support bacterial life have recently been experimentally and computationally identified. It is, however,still hard to estimate the ancient genes present in primitive cells compared to the essential genes in contemporary bacteria, because we do not know how ancestral primitive cells lived and proliferated, and therefore cannot directly evaluate the essentiality of the genes in ancestral primitive cells. The cell wall is normally essential for bacterial proliferation and cellular division of walled bacterial cells is normally highly controlled by the essential FtsZ cell division machinery. But, bacteria are capable of reverting to their cell wall deficient ancestral form, called the "L-form". Unlike "normal" cells, L-forms divide by a simple physical mechanism based on the effects of membrane dynamics, suggesting a mode of primitive proliferation before the appearance of the cell wall. In this review, we summarize the experimental and computational investigations of minimal gene sets and discuss the minimal cellular modules required to support the proliferation of primitive cells, based on L-form proliferation.  相似文献   
107.
108.
This work assessed both the fractionation and the seasonal mobility variations of Ga and In in systems impacted by acidic thermal waters. This was accomplished by performing thermodynamic calculations using the PHREEQC algorithm and by assessing the activity of acidophilic iron-oxidizing bacteria. The pH of the Kusatsu thermal waters in Gunma Prefecture, central Japan, is rapidly increased following the addition of a lime suspension. After an abrupt pH increase, under which conditions free ions of Ga and In and their complexes with Cl? and SO42? exist only in negligible quantities, the majority of dissolved Ga and In is removed by sorption onto suspended hydrous ferric oxides (HFOs). These HFOs are then transported to an artificial lake without significant sedimentation along the river. Subsequently, the suspended HFOs settle out and are added to sediments without significant fractionation between Ga and In. The Tamagawa thermal waters in Akita Prefecture, northeast Japan, are also treated with lime. However, complete neutralization requires mixing with some tributary streams, leading to a gradual downstream increase in pH. Dissolved Ga is, in general, sorbed by HFOs in upstream areas, leading to wide dispersal of Ga across the entire watershed. In comparison, In is transported to the lake inlet predominantly as a Cl? complex species without significant removal along the river, with the majority being precipitated in an artificial lake, where Cl? concentrations are too low to form stable complex species with In, and thus, dissolved In is sorbed by HFOs. As a result, In is effectively concentrated within downstream lakebed sediments, whereas Ga is dispersed along the river. Seasonal variations in Ga mobility within the Tamagawa field between snowmelt and low-flow seasons are primarily controlled by pH, because hydrolysis reactions of these metals, which are related to sorption reactions, tend to occur in the upstream regions in the snowmelt season. However, under warmer conditions, HFO formation preferably occurs due to the activity of acidophilic iron-oxidizing bacteria. Thus, under similar pH variations, dissolved Ga is more effectively removed by HFOs during warmer seasons. On the contrary, because HFOs are abundantly formed in low-flow season, even under colder conditions, before In hydrolysis reaction starts to occur, In mobility is less affected by water temperature and then bacterial activity.  相似文献   
109.
110.
Journal of Seismology - Site response is a critical consideration when assessing earthquake hazards. Site characterization is key to understanding site effects as influenced by seismic site...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号