首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   980篇
  免费   31篇
  国内免费   21篇
测绘学   37篇
大气科学   125篇
地球物理   212篇
地质学   395篇
海洋学   34篇
天文学   196篇
综合类   4篇
自然地理   29篇
  2021年   19篇
  2020年   15篇
  2019年   12篇
  2018年   17篇
  2017年   15篇
  2016年   25篇
  2015年   34篇
  2014年   30篇
  2013年   47篇
  2012年   42篇
  2011年   44篇
  2010年   37篇
  2009年   43篇
  2008年   49篇
  2007年   36篇
  2006年   36篇
  2005年   39篇
  2004年   33篇
  2003年   26篇
  2002年   30篇
  2001年   19篇
  2000年   23篇
  1999年   20篇
  1998年   17篇
  1997年   8篇
  1996年   15篇
  1995年   11篇
  1994年   14篇
  1993年   10篇
  1992年   9篇
  1991年   17篇
  1990年   11篇
  1989年   8篇
  1988年   13篇
  1987年   11篇
  1986年   9篇
  1985年   8篇
  1984年   14篇
  1983年   13篇
  1981年   17篇
  1980年   14篇
  1979年   7篇
  1978年   12篇
  1977年   8篇
  1976年   13篇
  1975年   8篇
  1974年   8篇
  1973年   10篇
  1972年   6篇
  1970年   7篇
排序方式: 共有1032条查询结果,搜索用时 15 毫秒
171.
172.
Plagioclases in different types of lunar highland rocks (all highly feldspathic) are twinned according to different laws and in different styles. Carlsbad and Carlsbad-albite twins, presumed to be growth twins, occur mainly in rocks which show igneous texture, and which have not been severely brecciated. These two twin laws appear to be absent from cataclastic rocks, including cataclastic anorthosite, possibly because the original twins were preferentially broken up in cataclasis (the composition plane being a plane of weakness). Pericline and lamellar albite twins, presumed to be deformation twins (except for some albite growth twins) occur in all types of rocks, and obvious deformation features, such as bending of lamellae, are well shown in many cataclastic rocks. Surprisingly, some Carlsbad and Carlsbad-albite twins are found in rocks with granoblastic texture, which presumably recrystallized in the solid state. This contrasts with previous observations on terrestrial metamorphic rocks, in which such growth twins are scarce or absent. The difference may be due to a higher rate of temperature change in the shock-heated lunar rocks. Further study of plagioclase twin laws in lunar rocks may assist in deciphering the complicated history of the highlands.  相似文献   
173.
A total of 150 samples were collected at a 10-days' anchor station in the Bornholm basin (55° 31.1′N, 15° 32.1′E) and analyzed for dissolved (< 0.4 μm) and particulate trace metals. For dissolved Mn, large gradients have been found in the vertical distribution with minimum concentrations (< 0.2 μgl?1) in the halocline zone and considerably higher values in the deep waters (up to 50 μgl?1). Ultrafiltration studies indicate that dissolved Mn is probably present as Mn2+ in the oxygenated bottom layer. The primary production process was not evident in the particulate Mn profile; the suspended particulate material (SPM), however, shows a considerable enrichment with depth, apparently due to Mn-oxide precipitation.The distribution of dissolved Fe was rather homogeneous, with average concentrations throughout the water column between 0.86 and 1.1 μgl?1, indicating that the oxidation of Fe2+ ions released from the sediments must already be complete in the very near oxidation boundary layer. Relatively high concentrations of particulate Fe were actually measured in the bottom layer, with the maximum mean of 11.2 μgl?1 at 72 m. Similarly to Mn, the profile of particulate Fe does not reflect the SPM curve of the eutrophic layer. On average, about 70% of the total Fe in surface waters was found to be particulate.The average concentrations of dissolved Zn, Cd and Cu were found to be rather homogeneous in the water column but showed a relatively high variability with time. A simplified model on trace-metal uptake by phytoplankton indicates no significant change in dissolved metal concentrations during the period of investigation. On average, only 1.7% Zn, 3.3% Cd and 9.8% Cu of the total metal concentrations were found in particulate form. SPM analyses showed significant correlations of Zn, Cd and Cu with Fe, indicating that particulate iron is an important carrier for particulate trace metals in Baltic waters.  相似文献   
174.
C++ and Java code for recursion formulas in mathematical geodesy   总被引:2,自引:0,他引:2  
  相似文献   
175.
Rock 12039 belongs to the olivine-depleted group of magmatic rocks characterized by normative and modal SiO2, absence or very low abundance of olivine, and high FeO/(FeO + MgO), Ti/Cr, and CaO/MgO ratios. Clinopyroxenes in this rock show a complex, essentially continuous, compositional zonation from augite cores through ferroaugite to ferrohedenbergite with an abrupt discontinuity at the pyroxferroite contact and, thus, are different from pyroxene in most other Apollo 12 rocks. Two grains contain thin subcalcic pigeonite zones. Texture, presence of very fine (< 1 μm) exsolution lamallae, and pyroxene zoning indicate a relatively rapid cooling history and pronounced in situ chemical fractionation. Rock 12039, on the basis of mineralogy and bulk composition, is the most highly differentiated member of the olivine-depleted basalt group  相似文献   
176.
Simulated circum-Arctic climate changes by the end of the 21st century   总被引:1,自引:0,他引:1  
This study investigates future changes of the Arctic climate by the end of the 21st century, simulated by the regional climate model HIRHAM forced with the ECHAM5/MPI-OM general circulation model and assuming the SRES A1B emission scenario. This assessment provides the regional patterns of future circulation, temperature, and precipitation in the Arctic by the end of the 21st century. The magnitude of winter and summer temperature and precipitation is projected to increase, while their interannual variability is projected to change seasonally and is regionally dependent. The regional-scale response of the temperature and precipitation is associated with changes in storm tracks and atmospheric baroclinicity. During winter, the regions of strongest baroclinicity are shifted northward and strengthened. Changes in the seasonal temperature and precipitation are accompanied by changes in their extremes. Extreme warm and cold events are significantly projected to change, with relative changes of seasonal precipitation being larger than those of precipitation extremes.  相似文献   
177.
178.
Abstract— We have studied a unique impact-melt rock, the Ramsdorf L chondrite, using optical and scanning microscopy and electron microprobe analysis. Ramsdorf contains not only clast-poor impact melt (Begemann and Wlotzka, 1969) but also a chondritic portion (>60 g) with what appears at low magnification to be a normal, well-defined chondritic texture. However, detailed studies at high magnification show that >90 vol% of the crystals in the chondritic portion were largely melted by the impact: the chondrules lack normal microtextures and are ghosts of the original features. The only relics from the precursor chondrules are olivine crystals, which have the highest melting temperature (~1620 °C). Pyroxene-rich chondrules were so extensively melted that no phenocrysts were preserved and the melt crystallized in situ before significant mixing with exterior olivine-rich melts. Fine-grained pyroxene chondrule ghosts have sharper boundaries with the matrix than porphyritic olivine and pyroxene chondrule ghosts, probably because pyroxene-rich melts are significantly more viscous. Complex textures that formed by injection of melt along cracks and fractures in relic olivines suggest that the chondritic portion of Ramsdorf formed directly from petrologic type 3–4 material by strong shock. We infer that Ramsdorf was largely melted by shock pressures of ~75–90 GPa and that chondrule ghosts and relic olivine phenocrysts were locally preserved by rapid cooling. Quenching was not due to the addition of cold clasts into the melt but to heterogeneous shock heating that only caused internal melting of large olivines and pyroxenes. Ramsdorf appears to be one of the most heavily shocked meteorites that has retained some trace of its original texture.  相似文献   
179.
180.
The Abee E4 enstatite chondrite breccia consists of clasts (many rimmed by metallic Fe, Ni), dark inclusions and matrix. The clasts and matrix were well equilibrated by thermal metamorphism, as evidenced by uniform mineral compositions, recrystallized chondrules, low MnO content of enstatite and high abundance of orthoenstatite. The clasts acquired their metal-rich rims prior to this metamorphic episode. The occurrence in Abee of relatively unmetamorphosed dark inclusions, clasts with nearly random magnetic orientations and a matrix with a uniform magnetic orientation [18,19] indicates that clast and matrix metamorphism occurred prior to the agglomeration of the breccia.The dark inclusions are an unusual kind of enstatite chondritic material, distinguished from the clasts and matrix by their relative enrichments in REE [21–23], low relative abundances of kamacite, total metallic Fe, Ni and silica, lower niningerite/(total sulfide) ratios, high relative abundances of oldhamite and martensite, smaller euhedral enstatite, more heterogeneous enstatite and metallic Fe, Ni, more calcic enstatite and more nickeliferous schreibersite.We propose the following model for the petrogenesis of the Abee breccia: The maximum metamorphic temperature of breccia parent material was?- 840°C (the minimum temperature of formation of Abee niningerite) and perhaps near 950–1000°C (the Fe-Ni-S eutectic temperature). Euhedral enstatite crystals in metallic Fe, Ni- and sulfide-rich areas grew at these metamorphic temperatures into pliable metal and sulfide. Breccia parent material was impact-excavated from depth, admixed with dark inclusions and rapidly cooled (700 to 200°C in about 2 hours) [15]. During this cooling, clast and matrix material acquired thermal remanent magnetization. Random conglomeration of clasts and unconsolidated matrix materials caused the clasts to have random magnetic orientations and the matrix areas to have net magnetic intensities of zero (due to the cancellation of numerous randomly oriented magnetic vectors of equal intensity in the matrix). A subsequent ambient magnetic field imparted a uniform net magnetic orientation to the matrix and caused the magnetic orientations of the clasts to be somewhat less random. The Abee breccia was later consolidated, possibly by shock or by shallow burial and very long-period/low-temperature (< 215°C) metamorphism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号