首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1113篇
  免费   54篇
  国内免费   22篇
测绘学   25篇
大气科学   132篇
地球物理   280篇
地质学   360篇
海洋学   108篇
天文学   174篇
综合类   9篇
自然地理   101篇
  2024年   4篇
  2023年   8篇
  2022年   8篇
  2021年   17篇
  2020年   26篇
  2019年   30篇
  2018年   34篇
  2017年   49篇
  2016年   36篇
  2015年   37篇
  2014年   47篇
  2013年   73篇
  2012年   38篇
  2011年   69篇
  2010年   57篇
  2009年   79篇
  2008年   68篇
  2007年   61篇
  2006年   56篇
  2005年   39篇
  2004年   43篇
  2003年   34篇
  2002年   24篇
  2001年   19篇
  2000年   24篇
  1999年   18篇
  1998年   15篇
  1997年   19篇
  1996年   17篇
  1995年   18篇
  1994年   9篇
  1993年   10篇
  1992年   7篇
  1991年   9篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   5篇
  1967年   1篇
排序方式: 共有1189条查询结果,搜索用时 62 毫秒
921.
Identifying the driving mechanisms of soft‐sediment deformation in the geological record is the subject of debate. Thawing of ice‐rich clayey silt above permafrost was proved experimentally to be among the processes capable of triggering deformation. However, previous work has failed so far to reproduce similar structures in sand. This study investigates fluidization and intrusive ice formation from soil models in the laboratory. Experimental conditions reproduce the growth of ice‐cored mounds caused by pore water pressure increase during freeze‐back of sand in a permafrost context. Excess pore water pressure causes hydraulic fracturing and the development of water lenses beneath the freezing front. Later freezing of the water lenses generates intrusive ice. The main structures consist of sand dykes and sills formed when the increase in pore water pressure exceeds a critical threshold, and soft‐sediment deformations induced by subsidence during ice melt. The combination of processes has resulted in diapir‐like structures. The experimental structures are similar to those described in Pleistocene sites from France. These processes constitute a credible alternative to the seismic hypothesis evoked to explain soft‐sediment deformation structures in other European regions subjected to Pleistocene cold climates.  相似文献   
922.
923.
We estimate seismological fracture energies from two subsets of events selected from the seismic sequences of L’Aquila (2009), and Northridge (1994): 57 and 16 selected events, respectively, including the main shocks. Following Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), we postulate that fracture energy (G) represents the post-failure integral of the dynamic weakening curve, which is described by the evolution of shear traction as a function of slip. Following a direct-wave approach, we compute mainshock-/aftershock-source spectral ratios, and analyze them using the approach proposed by Malagnini et al. (Pure Appl. Geophys., this issue, 2014) to infer corner frequencies and seismic moment. Our estimates of source parameters (including fracture energies) are based on best-fit grid-searches performed over empirical source spectral ratios. We quantify the source scaling of spectra from small and large earthquakes by using the MDAC formulation of Walter and Taylor (A revised Magnitude and Distance Amplitude Correction (MDAC2) procedure for regional seismic discriminants, 2001). The source parameters presented in this paper must be considered as point-source estimates representing averages calculated over specific ruptured portions of the fault area. In order to constrain the scaling of fracture energy with coseismic slip, we investigate two different slip-weakening functions to model the shear traction as a function of slip: (i) a power law, as suggested by Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), and (ii) an exponential decay. Our results show that the exponential decay of stress on the fault allows a good fit between measured and predicted fracture energies, both for the main events and for their aftershocks, regardless of the significant differences in the energy budgets between the large (main) and small earthquakes (aftershocks). Using the power-law slip-weakening function would lead us to a very different situation: in our two investigated sequences, if the aftershock scaling is extrapolated to events with large slips, a power law (a la Abercrombie and Rice) would predict unrealistically large stress drops for large, main earthquakes. We conclude that the exponential stress evolution law has the advantage of avoiding unrealistic stress drops and unbounded fracture energies at large slip values, while still describing the abrupt shear-stress degradation observed in high-velocity laboratory experiments (e.g., Di Toro et al., Fault lubrication during earthquakes, Nature 2011).  相似文献   
924.
We inverted for laterally varying attenuation, absolute site terms, moments and apparent stress using over 460,000 Lg amplitudes recorded by the USArray for frequencies between 0.5 and 16 Hz. Corner frequencies of Wells, Nevada, aftershocks, obtained by independent analysis of coda spectral ratios, controlled the tradeoff between attenuation and stress, while independently determined moments from St. Louis University and the University of California constrained absolute levels. The quality factor, Q, was low for coastal regions and interior volcanic and tectonic areas, and high for stable regions such as the Great Plains, and Colorado and Columbia Plateaus. Q increased with frequency, and the rate of increase correlated inversely with 1-Hz Q, with highest rates in low-Q tectonic regions, and lowest rates in high-Q stable areas. Moments matched independently determined moments with a scatter of 0.2 NM. Apparent stress ranged from below 0.01 to above 1 MPa, with means of 0.1 MPa for smaller events, and 0.3 MPa for larger events. Stress was observed to be spatially coherent in some areas; for example, stress was lower along the San Andreas fault through central and northern California, and higher in the Walker Lane, and for isolated sequences such as Wells. Variance reduction relative to 1-D models ranged from 50 to 90 % depending on band and inversion method. Parameterizing frequency dependent Q as a power law produced little misfit relative to a collection of independent, multi-band Q models, and performed better than the omega-square source parameterization in that sense. Amplitude residuals showed modest, but regionally coherent patterns that varied from event to event, even between those with similar source mechanisms, indicating a combination of focal mechanism, and near source propagation effects played a role. An exception was the Wells mainshock, which produced dramatic amplitude patterns due to its directivity, and was thus excluded from the inversions. The 2-D Q plus absolute site models can be used for high accuracy, broad area source spectra, magnitude and yield estimation, and, in combination with models for all regional phases, can be used to improve discrimination, in particular for intermediate bands that allow coverage to be extended beyond that available for high frequency P-to-S discriminants.  相似文献   
925.
926.
Through his students, Professor Nick Ambraseys has had a strong impact on the introduction of earthquake engineering practices in Australia, including historical earthquake studies, strong motion instrumentation and analysis, foundation studies including liquefaction, and building code formulation. In Australia the process of upgrading the third and current edition of the earthquake code and hazard map has begun. There are now about 150 digital strong motion recorders installed in cities, on major structures and at Australian National Seismograph Network sites. Three volumes of an isoseismal atlas have been published totalling more than 300 maps, mainly historical earthquakes. Significant progress has been made in paleoseismological studies across the continent, adding to the complexity of the intraplate seismicity model. With time and more installed accelerographs, the peak ground acceleration recorded in Australia has increased from .25 g in 1984 to .5 g in 1988 and 1 g in 1994, all from earthquakes smaller than magnitude 5, supporting Ambraseys contention that PGA alone is not a suitable parameter for a design ground motion.  相似文献   
927.
Our current view about the relationship between metals and bacteria in marine sediments might be biased because most studies only use ex situ approaches to quantify metals. The aim of the present research was to compare ex situ and in situ methods of metal measurement (DET and DGT--diffusive equilibration or diffusive gradients in thin-films) and relate the results with two commonly used microbiological variables (bacterial biomass and bacterial diversity as revealed by DGGE). No previous studies have used such in situ approaches in microbial ecology. For biomass and most of the investigated trace metals (Ag, Cd, Sn, Cr, Ni, Cu, Pb, and Al) no significant correlations were found. The exceptions were Fe, Mn, Co, and As which behave like micronutrients. For bacterial diversity, no relevant relationships were found. We conclude that in situ methods are more adapted tools for microbial ecologists but that ex situ approaches are still necessary.  相似文献   
928.
Like many other loliginid squid, Doryteuthis (Loligo) opalescens deposits egg cases on the ocean floor. Depending upon temperature, egg cases may persist for 5–12 weeks before the paralarvae hatch. Because of this relatively long duration and squid’s pelagic life history, egg cases provide a practical life stage to survey. During 2001–2002, squid egg beds in Monterey Bay, Carmel Bay, and around the California Channel Islands were surveyed using a remotely operated vehicle with the goal of delineating the habitat of egg beds that are spawned during active commercial fishing. Egg cases were highly aggregated and densities reached 1338 capsules m−2. Squid eggs were significantly shallower in Central California. Egg cases occurred between 20 and 93 m around the Channel Islands, and in Central California they were between 13 and 61 m. The temperatures in both regions were similar (10–12 °C), with some eggs in Southern California found up to 14.4 °C. Ninety-five percent of eggs were found on sand, suggesting that temperature and substrate are stronger behavioral cues than depth to stimulate spawning. Suitable spawning habitat was defined by three criteria: sandy benthic substrate, temperatures between 10 and 14.4 °C, and depths between 20 and 70 m when the first two criteria hold. Additionally, within this defined area, oxygen concentration is quantified. The greatest commercial landings of market squid occur in both Central and Southern California during a time of year when water temperatures of 10–12 °C are prevalent in the 20–70 m depth range.  相似文献   
929.
Efflux of CO2 above releases of petroleum light nonaqueous phase liquids (LNAPLs) has emerged as a critical parameter for resolving natural losses of LNAPLs and managing LNAPL sites. Current approaches for resolving CO2 efflux include gradient, flux chamber, and mass balance methods. Herein a new method for measuring CO2 efflux above LNAPL bodies, referred to as CO2 traps, is introduced. CO2 traps involve an upper and a lower solid phase sorbent elements that convert CO2 gas into solid phase carbonates. The sorbent is placed in an open vertical section of 10 cm ID polyvinyl chloride (PVC) pipe located at grade. The lower sorbent element captures CO2 released from the subsurface via diffusion and advection. The upper sorbent element prevents atmospheric CO2 from reaching the lower sorbent element. CO2 traps provide integral measurement of CO2 efflux based over the period of deployment, typically 2 to 4 weeks. Favorable attributes of CO2 traps include simplicity, generation of integral (time averaged) measurement, and a simple means of capturing CO2 for carbon isotope analysis. Results from open and closed laboratory experiments indicate that CO2 traps quantitatively capture CO2. Results from the deployment of 23 CO2 traps at a former refinery indicate natural loss rates of LNAPL (measured in the fall, likely concurrent with high soil temperatures and consequently high degradation rates) ranging from 13,400 to 130,000 liters per hectare per year (L/Ha/year). A set of field triplicates indicates a coefficient of variation of 18% (resulting from local spatial variations and issues with measurement accuracy).  相似文献   
930.
Experiments were conducted on Magilligan Strand, Northern Ireland, to assess the influence of the fetch effect on aeolian sediment transport. During each experiment surface sediments were uniformly dry and unhindered by vegetation or debris. The leading edge of erodible material was well defined, with the limit of wave up‐rush demarcating the wet–dry boundary; the work was conducted during low tides. A number of electronic and integrating traps were utilised, with two ultrasonic anemometers used to measure wind direction and velocity at 1 Hz. The combination of 1o direction data and trap locations resulted in a range of fetch distances, from 2 to 26 m. Data integrated over 15‐minute intervals (corresponding to the integrating trap data) revealed a distinct trend for all the experiments. An initial rapid increase in the transport rate occurred over a short distance (4–9 m). This maximum transport rate was maintained for a further 5–6 m before a steady decay in the flux followed, as fetch distance increased. A measured reduction in wind speed (6–8%) across the beach suggests a negative feedback mechanism may be responsible for the diminishing transport rate: the saltating grains induce energy dissipation, thus reducing the capability of the wind to maintain transport. For one experiment, the presence of compact sediment patches may also have contributed to the reduction of the transport rate. The decay trend calls into question the utility of the fetch effect as an important parameter in aeolian studies that seek to understand sediment budgets of the foredune‐beach zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号