首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1253篇
  免费   63篇
  国内免费   23篇
测绘学   30篇
大气科学   134篇
地球物理   329篇
地质学   405篇
海洋学   120篇
天文学   190篇
综合类   10篇
自然地理   121篇
  2024年   4篇
  2023年   8篇
  2022年   10篇
  2021年   17篇
  2020年   28篇
  2019年   31篇
  2018年   37篇
  2017年   51篇
  2016年   41篇
  2015年   39篇
  2014年   49篇
  2013年   80篇
  2012年   40篇
  2011年   83篇
  2010年   66篇
  2009年   86篇
  2008年   74篇
  2007年   71篇
  2006年   58篇
  2005年   41篇
  2004年   47篇
  2003年   38篇
  2002年   33篇
  2001年   20篇
  2000年   26篇
  1999年   19篇
  1998年   19篇
  1997年   22篇
  1996年   18篇
  1995年   21篇
  1994年   9篇
  1993年   14篇
  1992年   11篇
  1991年   9篇
  1990年   9篇
  1989年   6篇
  1988年   8篇
  1987年   9篇
  1986年   7篇
  1985年   9篇
  1984年   9篇
  1983年   11篇
  1982年   10篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1978年   6篇
  1976年   6篇
  1975年   2篇
  1973年   3篇
排序方式: 共有1339条查询结果,搜索用时 31 毫秒
121.
The chemical effects of chronic petroleum input into a shallow water marsh were examined by measuring hydrocarbon levels and dissolved organic carbon content of sediments associated with two active oil fields in south Louisiana. Annual levels of total organic carbon in the surface waters of the oil fields were higher by 1 mg C/l. in the salt marsh and 5 mg C/l. in the fresh marsh than the respective controlsites. Average dissolved organic carbon concentrations in the interstitial waters of cores taken within the oil field environments were 105% higher than the control in the salt marsh and 43% higher than the control in the fresh marsh. Significantly lower ratios of C17 to pristane occurred in both oil field sediments; however, average odd-even predominance values were not indicative of petroleum contaminated sediments. The results indicate that microbial processes are responsible for dissolution of petroleum into dissolved organic carbon and that dissolved organic carbon concentrations may be a more significant measure of chronic petroleum input than hydrocarbon distribution.  相似文献   
122.
Mesopelagic zooplankton may meet their nutritional and metabolic requirements in a number of ways including consumption of sinking particles, carnivory, and vertical migration. How these feeding modes change with depth or location, however, is poorly known. We analyzed fatty acid (FA) profiles to characterize zooplankton diet and large particle (>51 μm) composition in the mesopelagic zone (base of euphotic zone ?1000 m) at two contrasting time-series sites in the subarctic (station K2) and subtropical (station ALOHA) Pacific Ocean. Total FA concentration was 15.5 times higher in zooplankton tissue at K2, largely due to FA storage by seasonal vertical migrators such as Neocalanus and Eucalanus. FA biomarkers specific to herbivory implied a higher plant-derived food source at mesotrophic K2 than at oligotrophic ALOHA. Zooplankton FA biomarkers specific to dinoflagellates and diatoms indicated that diatoms, and to a lesser extent, dinoflagellates were important food sources at K2. At ALOHA, dinoflagellate FAs were more prominent. Bacteria-specific FA biomarkers in zooplankton tissue were used as an indicator of particle feeding, and peaks were recorded at depths where known particle feeders were present at ALOHA (e.g., ostracods at 100–300 m). In contrast, depth profiles of bacterial FA were relatively constant with depth at K2. Diatom, dinoflagellate, and bacterial biomarkers were found in similar proportions in both zooplankton and particles with depth at both locations, providing additional evidence that mesopelagic zooplankton consume sinking particles. Carnivory indices were higher and increased significantly with depth at ALOHA, and exhibited distinct peaks at K2, representing an increase in dependence on other zooplankton for food in deep waters. Our results indicate that feeding ecology changes with depth as well as by location. These changes in zooplankton feeding ecology from the surface through the mesopelagic zone, and between contrasting environments, have important consequences for the quality and quantity of organic material available to deeper pelagic and benthic food webs, and for organic matter sequestration.  相似文献   
123.
124.
125.
126.
Accelerated runoff and erosion commonly occur following forest fires due to combustion of protective forest floor material, which results in bare soil being exposed to overland flow and raindrop impact, as well as water repellent soil conditions. After the 2000 Valley Complex Fires in the Bitterroot National Forest of west‐central Montana, four sets of six hillslope plots were established to measure first‐year post‐wildfire erosion rates on steep slopes (greater than 50%) that had burned with high severity. Silt fences were installed at the base of each plot to trap eroded sediment from a contributing area of 100 m2. Rain gauges were installed to correlate rain event characteristics to the event sediment yield. After each sediment‐producing rain event, the collected sediment was removed from the silt fence and weighed on site, and a sub‐sample taken to determine dry weight, particle size distribution, organic matter content, and nutrient content of the eroded material. Rainfall intensity was the only significant factor in determining post‐fire erosion rates from individual storm events. Short duration, high intensity thunderstorms with a maximum 10‐min rainfall intensity of 75 mm h?1 caused the highest erosion rates (greater than 20 t ha?1). Long duration, low intensity rains produced little erosion (less than 0·01 t ha?1). Total C and N in the collected sediment varied directly with the organic matter; because the collected sediment was mostly mineral soil, the C and N content was small. Minimal amounts of Mg, Ca, and K were detected in the eroded sediments. The mean annual erosion rate predicted by Disturbed WEPP (Water Erosion Prediction Project) was 15% less than the mean annual erosion rate measured, which is within the accuracy range of the model. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   
127.
128.
Thanks to INTEGRAL’s long exposures of the Galactic Plane, the two brightest Soft Gamma-Ray Repeaters, SGR 1806-20 and SGR 1900+14, have been monitored and studied in detail for the first time at hard-X/soft gamma rays. This has produced a wealth of new scientific results, which we will review here. Since SGR 1806-20 was particularly active during the last two years, more than 300 short bursts have been observed with INTEGRAL and their characteristics have been studied with unprecedented sensitivity in the 15–200 keV range. A hardness-intensity anticorrelation within the bursts has been discovered and the overall Number-Intensity distribution of the bursts has been determined. In addition, a particularly active state, during which 100 bursts were emitted in 10 minutes, has been observed on October 5 2004, indicating that the source activity was rapidly increasing. This eventually led to the Giant Flare of December 27th 2004, for which a possible soft gamma-ray (>80 keV) early afterglow has been detected. The deep observations allowed us to discover the persistent emission in hard X-rays (20–150 keV) from 1806-20 and 1900+14, the latter being in a quiescent state, and to directly compare the spectral characteristics of all Magnetars (two SGRs and three Anomalous X-ray Pulsars) detected with INTEGRAL. D.G. acknowledges the French Space Agency (CNES) for financial support. Based on observations with INTEGRAL, an ESA project with instruments and the science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA. ISGRI has been realized and maintained in flight by CEA-Saclay/DAPNIA with the support of CNES. K.H. is grateful for support under NASA’s INTEGRAL U.S. Guest Investigator program, Grants NAG5-13738 and NNG05GG35G.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号