首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   1篇
测绘学   4篇
大气科学   26篇
地球物理   33篇
地质学   40篇
海洋学   30篇
天文学   29篇
自然地理   9篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2010年   11篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   8篇
  2003年   3篇
  2002年   9篇
  2001年   3篇
  2000年   2篇
  1999年   16篇
  1998年   5篇
  1997年   4篇
  1996年   8篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1982年   4篇
  1979年   1篇
  1978年   1篇
  1976年   5篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1971年   2篇
  1951年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
121.
A thorough examination of geophysical data from the Greenland-Norwegian Sea, Eurasia Basin and southern Labrador Sea shows significant asymmetry of several parameters (basement topography adjusted for sediment loading, free-air gravity anomaly, spreading half-rate and seismicity) with respect to crustal age:
1. (1) Average zero-age depth (0–57 m.y. B.P.), depth of highest rift mountain summits, and depth to magnetic basement (10–30 km from axis of Mohns and Knipovich ridges) is less on the North American plate flanks. The zero-age depth asymmetry is 400–500 m for the Eurasia Basin (0–57 m.y. B.P.) and for Mohns Ridge (57-22 m.y. B.P.), and 150–200 m for younger Mohns Ridge crust (22-0 m.y. B.P.) and for the extinct Aegir Ridge (57-27 m.y. B.P.). There is little or no asymmetry in the Labrador Sea except near the extinct rift valley, where the east flank is 150–300 m shallower. Magnetic depth-to-source computations provide an independent confirmation of basement asymmetry: The belts 10–30 km from the axis of Mohns and Knipovich ridges are 100–150 m shallower on the west flank of these ridges. The shallower ridge flank is topographically rougher, so that average rift mountain summits are 300 m shallower on the west flanks of the Mohns-Knipovich ridges, a larger asymmetry than for average zero-age depth. The amount of topographic asymmetry is greatest near the Mohns-Knipovich bend. Asymmetry appears to be greatest for ridges oriented normal to the spreading direction, and less for oblique spreading.
2. (2) Free-air gravity anomaly asymmetries of +5 to +20 mGal ( + sign indicates west flank is more positive) are associated with topographic asymmetry at least within 10–15 m.y. of the axis of Mohns and Knipovich ridges. Gravity is reduced on the older flanks west of the extinct Mid-Labrador Ridge and east of Mohns Ridge; asymmetric crustal layer thicknesses or densities provide one possible explanation, although deep-seated sources (e.g., mantle convection), unrelated to the crust, cannot be excluded.
3. (3) Spreading half-rate was about 5–15% lower on the North American plate flanks of Mohns Ridge (57-35 m.y.) and in the Eurasia Basin (0–57 m.y.); thus the fast-spreading flank tends to produce deeper, smoother crust. However, topographic asymmetry cannot relate only to spreading-rate asymmetry, since for the young Mohns Ridge crust (<9 m.y. B.P.) faster spreading and higher topography are both associated with the west flank.
4. (4) Mid-plate seismicity is higher on the Eurasia (eastern) flank of Mohns and Knipovich ridge, but this effect may be unrelated to the other three.
The fluid-dynamical model of Stein et al. correctly explains the sense of spreading-rate asymmetry (the North American plate, moving faster over mantle, is growing more slowly). However, the other asymmetries and their causal relationships remain theoretically unexplained.  相似文献   
122.
The Wanshan Hg mining area in Guizhou, China, was one of the world’s largest Hg producing regions. Numerous mine-waste and calcines still remain, leaching Hg to local rivers and streams and potentially impacting the local population. Several studies have been published on local environmental impacts of these mining and retorting residues, but a comprehensive, regional survey on the distribution of Hg in the rivers in the region, as presented in this paper, has not previously been conducted. This study focuses on the regional distribution and temporal variation of aqueous Hg fractions in the five main watercourses draining the Wanshan Hg mining and retorting area, covering more than 700 km2. Three sampling campaigns were carried out in 2007 and 2008, covering high flow, normal flow and low flow periods. Total (THg), particulate (PHg), dissolved (DHg) and reactive (RHg) Hg fractions were determined. All rivers had the highest Hg concentrations at sample sites about 100–500 m downstream of the mine wastes. Total Hg concentrations ranged from extremely high (up to 12,000 ng L−1) at the sample site just 100 m below mine wastes, to quite low in tributary streams (1.9 ng L−1, about 14 km downstream of the mine wastes). Total Hg and PHg concentrations were usually highest during high flow periods in the Hg-contaminated areas (i.e. THg ? 50 ng L−1), while in the less-impacted downstream areas (with THg < 50 ng L−1) the Hg concentrations were usually lowest during high flow periods. Although highly elevated concentrations of Hg in water samples were found just downstream of the mine wastes, the concentrations decreased sharply to well below 50 ng L−1 (US EPA Hg concentration standard for protection of fresh water), within only 6–8 km downstream. Concentrations of THg were highly dominated by and correlated with PHg (R2 = 0.996–0.999, P < 0.001); PHg constituted more than 80% of THg in Hg-contaminated areas, and could account for 99.6% of the THg close to the mine wastes.  相似文献   
123.
Throughfall (TF) and wet only (WO) deposition along with SO2 and sulfate (SO42−) concentration in air at 4 urban and rural sites in southwestern China were monitored in order to understand the role of different forms of sulfur (S) emission to the S deposition and its effect in China. The sites were located in Chongqing, Hunan, and Guizhou provinces. S deposition at the most polluted site reached 15 g S m− 2 yr− 1. At three of the sites, located in the vicinity of several emission sources, dry S deposition is 2.1–4.2 times that of wet deposition, which is significantly higher than what is found in most other parts of the world.Main components in airborne particles (PM10) are (NH4)2SO4 and CaSO4 at the highly polluted Tie Shan Ping (TSP) site. Dust particles of gypsum (CaSO4) in the air are partly due to direct emission and partly from the reaction of calcium oxides and carbonates with sulfuric acid in the air. To illustrate the importance of sulfate emission to total S deposition we analyzed the source of S deposition based on both measurements and models. Results indicated that direct emission of SO42− particles could account for high proportion in total S deposition at the three most polluted sites.  相似文献   
124.
SeaMARC II (11- to 12-kHz) side-scan sonar revealed hundreds of small strong-backscatter spots, tens to 500?m in diameter, along the lips of the Bear Island fan slide valley. New bathymetry, deep-tow side-scan, deep-tow profiles, heatflow, and gravity cores were collected for ground-truth. These mounds are probably mud diapirs (or mud-built mounds) typically 10–75?m high, formed by glacial sediment mobilized by Late Pleistocene slide events. The mounds are arranged along NNE trending lines, suggesting control by intrasedimentary faults ca. 0.5–1 km apart. Diapirs examined on the Vøring Plateau exhibit WNW structural control. No heatflow anomaly was found in four stations on or next to diapirs in either area.  相似文献   
125.
126.
The measures required for driving a tunnel below the groundwater table depend on the permeability of the soil. In coarse-grained, highly permeable soils additional measures, for example compressed-air support combined with a reduction of the permeability of the soil, e.g. induced by grouting, are necessary. Compared to this, it is possible to do without such measures in fine-grained, cohesive soils because of the increased short-term stability of the tunnel face under undrained conditions. In this publication the results of 3-dimensional finite-element calculations are presented to show the influence of the permeability of the soil and also the rate of the tunnel driving on the deformations around the tunnel as well as on the ground surface. The calculated deformations can furthermore be considered as an indicator for the time dependent stability of the tunnel face due to a higher redistribution of stresses and by that an enlargement of the plasticized zone. Usually the stability of the tunnel face is reduced by the presence of water because of the flow of water towards the tunnel. In low permeable soils undrained conditions prevail immediately after an excavation step. In this case relatively high stability-ratios may occur. The stability of the tunnel face will be reduced with increasing time until reaching the lower boundary of possible values, possibly leading to failure. If calculations are done under the assumption of drained conditions, the real stability of the tunnel face during construction may substantially exceed that of the calculated one. On the other hand, if calculations are done for undrained conditions, the effective stability may lie on the unsafe side [10]. There is therefore a big demand to optimize the method of investigating deformations around the tunnel, so as to ensure a safe tunnel excavation on the one hand and to guarantee a cost-effective process on the other. In this paper the tunnelling process is modelled by a step-by-step excavation under atmospheric conditions. The soil is described by a material model which distinguishes between primary and unload-reload stress paths and also accounts for stress-dependent stiffness parameters. The failure criterion is described by the Mohr-Coulomb criterion that considers cohesion, friction angle and angle of dilatancy.  相似文献   
127.
Manganese oxide crusts similar to those reported from the Mid-Atlantic Ridge rift valley by Scott et al. (1974) were dredged at two sites near the Galapagos spreading axis on ocean floor estimated from magnetic anomalies to be 2.4 and 0.3 m.y. old. Compared to the typical ocean-floor manganese deposits attributed to precipitation from seawater, the 2–6 cm thick manganese crusts reported here exhibit very low Fe/Mn and low232Th/238U ratios, as well as lower transition metal and higher manganese concentrations. The manganese crusts were deposited several orders of magnitude faster than the more common hydrogenous nodules; this fact together with other geochemical characteristics and the geophysical environment suggests the manganese deposits reported here are of hydrothermal origin.  相似文献   
128.
129.
A small scale and temporally limited CO2 injection test was performed in a shallow aquifer to investigate the geochemical impact of CO2 upon such aquifers and to apply and verify different monitoring methods. Detailed site investigation coupled with multiphase simulations were necessary to design the injection experiment and to set up the monitoring network, before CO2 was injected over a ten-day period at three injection wells, at a depth of 18?m below surface level into a quaternary sand aquifer located close to the town of Wittstock in Northeast Germany. Monitoring methods comprised groundwater sampling and standard analyses, as well as trace element analyses and isotope analyses; geoelectrical borehole monitoring; passive samplers to analyse temporally integrated for cations and multi-parameter probes that can measure continuously for dissolved CO2, pH and electrical conductivity. Due to CO2 injection, total inorganic carbon concentrations increased and pH decreased down to a level of 5.1. Associated reactions comprised the release of major cations and trace elements. Geoelectrical monitoring, as well as isotope analyses and multi-parameter probes proved to be suitable methods for monitoring injected CO2 and/or the alteration of groundwater.  相似文献   
130.
On 21 May 1989, a major earthquake swarm on the Reykjanes Ridge at59°44 N, 29°32 W at a water depth of about 1000 m andabout 500 km southwest of Iceland was detected on both the WorldwideStandard Seismic Network (WWSSN) and Icelandic seismic networks. As part ofa multi-institutional response to this swarm, the Naval ResearchLaboratory arranged for a P3 Orion Aircraft to deploy sonobuoys and AXBTs inthe immediate vicinity of the swarm activity. The detection of the swarmmotivated a survey of the region in 1990, using the towed SeaMARC IIside-looking sonar system. In 1990–1991 the Russian ShirshovInstitute of Oceanology offered the use of its MIR deep-divingsubmersibles to investigate the rise axis for recent volcanism. During 1992,a scientific team comprised of five US and ten Russian scientists mobilizedthe twin, deep diving Russian submersibles to study the spreading axis ofthe Reykjanes Ridge. The resulting data analyses allows us to conclude thatthe 1989 seismic swarm event occurred adjacent to and east of the largeaxial high in the center of our survey area. The length, width and depthrange of the earthquakes were very similar to major seismic swarm eventsconfined to fissure systems in the Krafla region of Iceland. It is likelythat the earthquake swarm was located on a fresh, well-defined systemof fissures and faults extending south of the northernmost axial highstudied. The earthquake swarm was probably associated with an emanation oflava creating a region of high backscatter, located just to the east of thecentral axial high. In addition, the region of high-backscatterremains unsampled because it lay underneath the nadir of the processedSeaMARC tracks used to plan the submersible survey. However many sampleswere taken and structural studies of the evolving Reykjanes Ridge werecarried out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号