首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   621篇
  免费   21篇
  国内免费   10篇
测绘学   4篇
大气科学   23篇
地球物理   168篇
地质学   194篇
海洋学   127篇
天文学   88篇
综合类   11篇
自然地理   37篇
  2022年   3篇
  2021年   8篇
  2020年   16篇
  2019年   13篇
  2018年   11篇
  2017年   18篇
  2016年   11篇
  2015年   18篇
  2014年   25篇
  2013年   35篇
  2012年   23篇
  2011年   24篇
  2010年   27篇
  2009年   37篇
  2008年   35篇
  2007年   31篇
  2006年   38篇
  2005年   31篇
  2004年   21篇
  2003年   13篇
  2002年   16篇
  2001年   9篇
  2000年   19篇
  1999年   14篇
  1998年   8篇
  1997年   8篇
  1996年   5篇
  1995年   11篇
  1994年   9篇
  1993年   9篇
  1992年   6篇
  1991年   7篇
  1990年   7篇
  1989年   2篇
  1988年   9篇
  1987年   6篇
  1986年   5篇
  1985年   13篇
  1984年   7篇
  1983年   10篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   2篇
  1976年   4篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有652条查询结果,搜索用时 15 毫秒
601.
602.
The thermal expansion of tephroite (Mn2SiO4) at temperatures between 25 and 850°C has been determined by a dilatometric technique. The analysis of data in terms of Grüneisen's theory yields the Grüneisen's parameter γ=1.04, and the pressure derivative of rigidity (?G/?P)=0.7.  相似文献   
603.
The density of liquid Fe–S was measured at 4 GPa and 1,923 K using a sink/float method with a composite density marker. The density marker consisted of a Pt rod core and an Al2O3 tube surrounding. The uncertainty in the density of the composite marker is much smaller than that of the composite sphere, which had been used in previous density measurements. The density of liquid Fe–S decreases nonlinearly with increasing sulfur content at 4 GPa and 1,923 K. This tendency is consistent with the results measured at ambient pressure. The molar volume of FeS calculated from the measured density gradually increases with sulfur content. The excess molar volume from ideal mixing of Fe and S at 4 GPa was negative value. The new method proposed here is applicable to the density measurement of other Fe alloys at high pressure. The tendency of the molar volume and the excess molar volume with sulfur content at ambient pressure is consistent with these at high pressure at least up to 4 GPa. The excess molar volume at high pressure is essential for estimating the amount of light elements in the outer core.  相似文献   
604.
Continuous core sediments (to a depth of 90.1 m) taken at a transitional area of Holocene and Pleistocene deposits in Sonargaon, Bangladesh were characterized for their mineralogy and chemistry. Among the sediments of the lower part of the Holocene aquifer (depth: 18–29 m), where most domestic wells are installed, As is mostly fixed in biotite and organic phases. A positive correlation of As concentration with those of Al and Fe but not that of total organic C clearly suggests that biotite is a primary source of As. Although microbial reduction–dissolution of As-containing Fe oxyhydroxides is thought to cause As-enriched groundwater in the Ganges–Brahmaputra–Meghna delta plain, the authors conclude that chemical weathering of biotite is the primary formation mechanism and prevailing reducing conditions contribute to the expansion of As-enriched groundwater in the study area.  相似文献   
605.
The Central African Belt in the Nkambe area, northwestern Cameroon represents a collisional zone between the Saharan metacraton and the Congo craton during the Pan-African orogeny, and exposes a variety of granitoids including foliated and massive biotite monzogranites in syn- and post-kinematic settings. Foliated and massive biotite monzogranites have almost identical high-K calc-alkaline compositions, with 73–67 wt.% SiO2, 17–13 wt.% Al2O3, 2.1–0.9 wt.% CaO, 4.4–2.7 wt.% Na2O and 6.3–4.4 wt.% K2O. High concentrations of Rb (264–96 ppm), Sr (976–117 ppm), Ba (3680–490 ppm) and Zr (494–99 ppm), with low concentrations of Y (mostly< 20 ppm with a range 54–6) and Nb (up to 24 ppm) suggest that the monzogranites intruded in collisional and post-collisional settings. The Sr/Y ratio ranges from 25 to 89. K, Rb and Ba resided in a single major phase such as K-feldspar in the source. Garnet was present in the source and remained as restite at the site of magma generation. This high K2O and Sr/Y granitic magma was generated by partial melting of a granitic protolith under high-pressure and H2O undersaturated conditions where garnet coexists with K-feldspar, albitic plagioclase. CHIME (chemical Th–U-total Pb isochron method) dating of zircon yields ages of 569 ± 12–558 ± 24 Ma for the foliated biotite monzogranite and 533 ± 12–524 ± 28 Ma for the massive biotite monzogranite indicating that the collision forming the Central African Belt continued in to Ediacaran (ca 560 Ma).  相似文献   
606.
The Higo Complex of west-central Kyushu, western Japan is a 25 km long body of metasedimentary and metabasic lithologies that increase in metamorphic grade from schist in the north to migmatitic granulite in the south, where granitoids are emplaced along the southern margin. The timing of granulite metamorphism has been extensively investigated and debated. Previously published Sm–Nd mineral isochrons for garnet-bearing metapelite yielded ca.220–280 Ma ages, suggesting high-grade equilibration older than the lower grade schist to the north, which yielded ca.180 Ma K–Ar muscovite ages. Ion and electron microprobe analyses on zircon have yielded detrital grains with rim ages of ca.250 Ma and ca.110 Ma. Electron microprobe ages from monazite and xenotime are consistently 110–130 Ma. Two models have been proposed: 1) high-grade metamorphism and tectonism at ca.115 Ma, with older ages attributed to inheritance; and 2) high-grade metamorphism at ca.250 Ma, with resetting of isotopic systems by contact metamorphism at ca.105 Ma during the intrusion of granodiorite. These models are evaluated through petrographic investigation and electron microprobe Th–U–total Pb dating of monazite in metapelitic migmatites and associated lithologies. In-situ investigation of monazite reveals growth and dissolution features associated with prograde and retrograde stages of progressive metamorphism and deformation. Monazite Th–U–Pb isochrons from metapelite, diatexite and late-deformational felsic dykes consistently yield ca.110–120 Ma ages. Earlier and later stages of monazite growth cannot be temporally resolved. The preservation of petrogenetic relationships, coupled with the low diffusion rate of Pb at < 900 °C in monazite, is strong evidence for timing high-temperature metamorphism and deformation at ca.115 Ma. Older ages from a variety of chronometers are attributed to isotopic disequilibrium between mineral phases and the preservation of inherited and detrital age components. Tentative support is given to tectonic models that correlate the Higo terrane with exotic terranes between the Inner and Outer tectonic Zones of southwest Japan, possibly derived from the active continental margin of the South China Block. These terranes were dismembered and translated northeastwards by transcurrent shearing and faulting from the beginning to the end of the Cretaceous Period.  相似文献   
607.
The Holocene stalagmite FG01 collected at the Fukugaguchi Cave in Itoigawa, central Japan provides a unique high‐resolution record of the East Asian winter monsoon. Because of the climate conditions on the Japan Sea side of the Japanese islands, the volume of precipitation during the winter is strongly reflected in the stalagmite δ18O signal. Examination of the carbon isotopes and the Mg/Ca ratio of FG01 provided additional information on the Holocene climate in Itoigawa, which is characterized by two different modes separated at 6.4 ka. Dripwater composition and the correlation between the δ13C and Mg/Ca data of FG01 indicate the importance of prior calcite precipitation (PCP), a process that selectively eliminated 12C and calcium ions from infiltrating water from CO2 degassing and calcite precipitation. In an earlier period (10.0–6.4 ka), an increase in soil pCO2 associated with warming and wetting climate trends was a critical factor that enhanced PCP, and resulted in an increasing trend in the Mg/Ca and δ13C data and a negative correlation between the δ13C and δ18O profiles. A distinct peak in the δ13C age profile at 6.8 ka could be a response to an increase of approximately 10% in C4 plants in the recharge area. At 6.4 ka, the climate mode changed to another, and correlation between δ18O and δ13C became positive. In addition, a millennial‐scale variation in δ18O and pulsed changes in δ13C and Mg/Ca became distinct. Assuming that δ18O and PCP were controlled by moisture in the later period, the volume of precipitation was high during 6.0–5.2, 4.4–4.0, and 3.0–2.0 ka. In contrast, the driest interval in Itoigawa was during 0.2–0.4 ka, and broadly corresponds to the Little Ice Age.  相似文献   
608.
Constraining physical parameters of tephra dispersion and deposition from explosive volcanic eruptions is a significant challenge, because of both the complexity of the relationship between tephra distribution and distance from the vent and the difficulties associated with direct and comprehensive real-time observations. Three andesitic subplinian explosions in January 2011 at Shinmoedake volcano, Japan, are used as a case study to validate selected empirical and theoretical models using observations and field data. Tephra volumes are estimated using relationships between dispersal area and tephra thickness or mass/area. A new cubic B-spline interpolation method is also examined. Magma discharge rate is estimated using theoretical plume models incorporating the effect of wind. Results are consistent with observed plume heights (6.4–7.3 km above the vent) and eruption durations. Estimated tephra volumes were 15–34?×?106 m3 for explosions on the afternoon of 26 January and morning of 27 January, and 5.0–7.6?×?106 m3 for the afternoon of 27 January; magma discharge rates were in the range 1–2?×?106 kg/s for all three explosions. Clast dispersal models estimated plume height at 7.1?±?1 km above the vent for each explosion. The three subplinian explosions occurred with approximately 12-h reposes and had similar mass discharge rates and plume heights but decreasing erupted magma volumes and durations.  相似文献   
609.
610.
We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722?g?m?2?day?1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW?CNNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526?±?160?t?day?1 of which 453?t?day?1 (29.7?%) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4?C240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154?t?day?1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07?×?1014?J?day?1 or to a total heat flow of 1,237?MWt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号