首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71359篇
  免费   1408篇
  国内免费   660篇
测绘学   1722篇
大气科学   5068篇
地球物理   14303篇
地质学   25342篇
海洋学   6261篇
天文学   16353篇
综合类   212篇
自然地理   4166篇
  2022年   396篇
  2021年   701篇
  2020年   783篇
  2019年   834篇
  2018年   1901篇
  2017年   1775篇
  2016年   2251篇
  2015年   1330篇
  2014年   2190篇
  2013年   3780篇
  2012年   2291篇
  2011年   3136篇
  2010年   2628篇
  2009年   3521篇
  2008年   3268篇
  2007年   3066篇
  2006年   2890篇
  2005年   2375篇
  2004年   2260篇
  2003年   2127篇
  2002年   1933篇
  2001年   1815篇
  2000年   1725篇
  1999年   1381篇
  1998年   1479篇
  1997年   1394篇
  1996年   1107篇
  1995年   1147篇
  1994年   962篇
  1993年   878篇
  1992年   853篇
  1991年   762篇
  1990年   859篇
  1989年   722篇
  1988年   654篇
  1987年   818篇
  1986年   665篇
  1985年   860篇
  1984年   926篇
  1983年   865篇
  1982年   836篇
  1981年   710篇
  1980年   667篇
  1979年   611篇
  1978年   607篇
  1977年   554篇
  1976年   540篇
  1975年   501篇
  1974年   510篇
  1973年   470篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
601.
Melt inclusions were examined in phenocrysts in basalt, andesite, dacite, and rhyodacite from the Karymskii volcanic center in Kamchatka and dacite form Golovnina volcano in Kunashir Island, Kuriles. The inclusions were examined by homogenization and by analyzing glasses in more than 80 inclusions on an electron microscope and ion microprobe. The SiO2 concentrations in the melt inclusions in plagioclase phenocrysts from basalts from the Karymskii volcanic center vary from 47.4 to 57.1 wt %, these values for inclusions in plagioclase phenocrysts from andesites are 55.7–67.1 wt %, in plagioclase phenocrysts from the dacites and rhyodacites are 65.9–73.1 wt %, and those in quartz in the rhyodacites are 72.2–75.7 wt %. The SiO2 concentrations in melt inclusions in quartz from dacites from Golovnina volcano range from 70.2 to 77.0 wt %. The basaltic melts are characterized by usual concentrations of major components (wt %): TiO2 = 0.7–1.3, FeO = 6.8–11.4, MgO = 2.3–6.1, CaO = 6.7–10.8, and K2O = 0.4–1.7; but these rocks are notably enriched in Na2O (2.9–7.4 wt % at an average of 5.1 wt %, with the highest Na2O concentration detected in the most basic melts: SiO2 = 47.4–52.0 wt %. The concentrations of volatiles in the basic melts are 1.6 wt % for H2O, 0.14 wt % for S, 0.09 wt % for Cl, and 50 ppm for F. The andesite melts are characterized by high concentrations (wt %) of FeO (6.5 on average), CaO (5.2), and Cl (0.26) at usual concentrations of Na2O (4.5), K2O (2.1), and S (0.07). High water concentrations were determined in the dacite and rhyodacite melts: from 0.9 to 7.3 wt % (average of 15 analyses equals 4.5 wt %). The Cl concentration in these melts is 0.15 wt %, and those of F and S are 0.06 and 0.01 wt %, respectively. Melt inclusions in quartz from the dacites of Golovnina volcano are also rich in water: they contain from 5.0 to 6.7 wt % (average 5.6 wt %). The comparison of melt compositions from the Karymskii volcanic center and previously studied melts from Bezymyannyi and Shiveluch volcanoes revealed their significant differences. The former are more basic, are enriched in Ti, Fe, Mg, Ca, Na, and P but significantly depleted in K. The melts of the Karymskii volcanic center are most probably less differentiated than the melts of Bezymyannyi and Shiveluch volcanoes. The concentrations of water and 20 trace elements were measured in the glasses of 22 melt inclusions in plagioclase and quartz from our samples. Unusually high values were obtained for Li concentrations (along with high Na concentrations) in the basaltic melts from the Karymskii volcanic center: from 118 to 1750 ppm, whereas the dacite and rhyolite melts contain 25 ppm Li on average. The rhyolite melts of Golovnina volcano are much poorer in Li: 1.4 ppm on average. The melts of the Karymskii volcanic center are characterized by relative minima at Nb and Ti and maxima at B and K, as is typical of arc magmas.  相似文献   
602.
603.
This paper reviews the geochemical, isotopic (2H, 18O, 13C, 3H and 14C) and numerical modelling approaches to evaluate possible geological sources of the high pH (11.5)/Na–Cl/Ca–OH mineral waters from the Cabeço de Vide region (Central-Portugal). Water–rock interaction studies have greatly contributed to a conceptual hydrogeological circulation model of the Cabeço de Vide mineral waters, which was corroborated by numerical modelling approaches. The local shallow groundwaters belong to the Mg–HCO3 type, and are derived by interaction with the local serpentinized rocks. At depth, these type waters evolve into the high pH/Na–Cl/Ca–OH mineral waters of Cabeço de Vide spas, issuing from the intrusive contact between mafic/ultramafic rocks and an older carbonate sequence. The Cabeço de Vide mineral waters are supersaturated with respect to serpentine indicating that they may cause serpentinization. Magnesium silicate phases (brucite and serpentine) seem to control Mg concentrations in Cabeço de Vide mineral waters. Similar δ2H and δ18O suggest a common meteoric origin and that the Mg–HCO3 type waters have evolved towards Cabeço de Vide mineral waters. The reaction path simulations show that the progressive evolution of the Ca–HCO3 to Mg–HCO3 waters can be attributed to the interaction of meteoric waters with serpentinites. The sequential dissolution at CO2 (g) closed system conditions leads to the precipitation of calcite, magnesite, amorphous silica, chrysotile and brucite, indicating that the waters would be responsible for the serpentinization of fresh ultramafic rocks (dunites) present at depth. The apparent age of Cabeço de Vide mineral waters was determined as 2790 ± 40 a BP, on the basis of 14C and 13C values, which is in agreement with the 3H concentrations being below the detection limit.  相似文献   
604.
Column experiments, simulating the behavior of passive treatment systems for acid mine drainage, have been performed. Acid solutions (HCl or H2SO4, pH 2), with initial concentrations of Fe(III) ranging from 250 to 1500 mg L−1, were injected into column reactors packed with calcite grains at a constant flow rate. The composition of the solutions was monitored during the experiments. At the end of the experiments (passivation of the columns), the composition and structure of the solids were measured. The dissolution of calcite in the columns caused an increase in pH and the release of Ca into the solution, leading to the precipitation of gypsum and Fe–oxyhydroxysulfates (Fe(III)–SO4–H+ solutions) or Fe–oxyhydroxychlorides (Fe(III)–Cl–H+ solutions). The columns worked as an efficient barrier for some time, increasing the pH of the circulating solutions from 2 to 6–7 and removing its metal content. However, after some time (several weeks, depending on the conditions), the columns became chemically inert. The results showed that passivation time increased with decreasing anion and metal content of the solutions. Gypsum was the phase responsible for the passivation of calcite in the experiments with Fe(III)–SO4–H+ solutions. Schwertmannite and goethite appeared as the Fe(III) secondary phases in those experiments. Akaganeite was the phase responsible for the passivation of the system in the experiments with Fe(III)–Cl–H+ solutions.  相似文献   
605.
606.
This paper reports new geochemical data on dissolved major and minor constituents in surface waters and ground waters collected in the Managua region (Nicaragua), and provides a preliminary characterization of the hydrogeochemical processes governing the natural water evolution in this area. The peculiar geological features of the study site, an active tectonic region (Nicaragua Depression) characterized by active volcanism and thermalism, combined with significant anthropogenic pressure, contribute to a complex evolution of water chemistry, which results from the simultaneous action of several geochemical processes such as evaporation, rock leaching, mixing with saline brines of natural or anthropogenic origin. The effect of active thermalism on both surface waters (e.g., saline volcanic lakes) and groundwaters, as a result of mixing with variable proportions of hyper-saline geothermal Na–Cl brines (e.g., Momotombo geothermal plant), accounts for the high salinities and high concentrations of many environmentally-relevant trace elements (As, B, Fe and Mn) in the waters. At the same time the active extensional tectonics of the Managua area favour the interaction with acidic, reduced thermal fluids, followed by extensive leaching of the host rock and the groundwater release of toxic metals (e.g., Ni, Cu). The significant pollution in the area, deriving principally from urban and industrial waste-water, probably also contributes to the aquatic cycling of many trace elements, which attain concentrations above the WHO recommended limits for the elements Ni (∼40 μg/l) and Cu (∼10 μg/l) limiting the potential utilisation of Lake Xolotlan for nearby Managua.  相似文献   
607.
608.
To understand the biogeochemical cycles of trace metals (Cd, Cu, Fe, Mn, Ni and Zn) in a hypersaline subtropical marsh, geochemical studies of both interstitial and solid phases were conducted on sediment cores from Chiricahueto marsh, SE Gulf of California. The sequential extraction procedure proposed by Tessier was used to estimate the percentages of the metals present in each geochemical phase of the sediment. Metal concentrations in the solid phase were found to be enriched in the upper layers and mainly associated with reactive fractions such as organic matter, Fe–Mn oxyhydroxides and carbonates (46–74% of Ni, Mn and Cd, and 11–19% of Cu and Zn). Principal factor analysis (PFA) and Spearman correlation analysis revealed a strong positive association of metals and their reactive phases with OC (the diagenetic component), and a negative or non-association with the mud content, Al, Fe and Li (the lithogenic component). Diagenetically released metals are mainly mobilized within hypersaline sediments by buoyancy transport (>90% of total flux) in response to an extreme salinity gradient by input of fresh groundwater (3–6 psu cm−1). The molecular diffusion due to the gradient of metals in porewater (maximum and higher levels at 5–7 and below 20 cm depth, respectively) is significantly less important to the advective transport. Most of the metals mobilized by diffusion–advection processes are re-precipitated in the sediments by authigenic minerals, only <10% of most metals are extruded out to the overlying water column. Authigenic accumulation rates were estimated as 1.42–7.09 mg m−2 a−1 for Cd; 58.8–378 for Cu; 6922–17,985 for Fe; 38.2–345 for Mn; 20.8–263 for Ni; and 282–2956 mg m−2 a−1 for Zn. The Mn–Fe oxyhydroxides (40–85% of reactive metals) in the upper oxic–suboxic layers (<5 cm below surface) and sulfide minerals (75–97%) in anoxic sediment layers (7–18 cm) constitute the main scavengers for metals.  相似文献   
609.
610.
Here new data from field bioremediation experiments and geochemical modeling are reported to illustrate the principal geochemical behavior of As in anaerobic groundwaters. In the field bioremediation experiments, groundwater in Holocene alluvial aquifers in Bangladesh was amended with labile water-soluble organic C (molasses) and MgSO4 to stimulate metabolism of indigenous SO4-reducing bacteria (SRB). In the USA, the groundwater was contaminated by Zn, Cd and SO4, and contained <10 μg/L As under oxidized conditions, and a mixture of sucrose and methanol were injected to stimulate SRB metabolism. In Bangladesh, groundwater was under moderately reducing conditions and contained ∼10 mg/L Fe and ∼100 μg/L As. In the USA experiment, groundwater rapidly became anaerobic, and dissolved Fe and As increased dramatically (As > 1000 μg/L) under geochemical conditions consistent with bacterial Fe-reducing conditions. With time, groundwater became more reducing and biogenic SO4 reduction began, and Cd and Zn were virtually completely removed due to precipitation of sphalerite (ZnS) and other metal sulfide mineral(s). Following precipitation of chalcophile elements Zn and Cd, the concentrations of Fe and As both began to decrease in groundwater, presumably due to formation of As-bearing FeS/FeS2. By the end of the six-month experiment, dissolved As had returned to below background levels. In the initial Bangladesh experiment, As decreased to virtually zero once biogenic SO4 reduction commenced but increased to pre-experiment level once SO4 reduction ended. In the ongoing experiment, both SO4 and Fe(II) were amended to groundwater to evaluate if FeS/FeS2 formation causes longer-lived As removal. Because As-bearing pyrite is the common product of SRB metabolism in Holocene alluvial aquifers in both the USA and Southeast Asia, it was endeavored to derive thermodynamic data for arsenian pyrite to better predict geochemical processes in naturally reducing groundwaters. Including the new data for arsenian pyrite into Geochemist’s Workbench, its stability field completely dominates in reducing Eh–pH space and “displaces” other As-sulfides (orpiment, realgar) that have been implied to be important in previous modeling exercises and reported in rare field conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号