首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   20篇
  国内免费   14篇
测绘学   11篇
大气科学   53篇
地球物理   157篇
地质学   187篇
海洋学   113篇
天文学   57篇
综合类   4篇
自然地理   50篇
  2021年   7篇
  2020年   10篇
  2019年   13篇
  2018年   12篇
  2017年   22篇
  2016年   23篇
  2015年   18篇
  2014年   17篇
  2013年   23篇
  2012年   20篇
  2011年   28篇
  2010年   32篇
  2009年   27篇
  2008年   22篇
  2007年   21篇
  2006年   18篇
  2005年   27篇
  2004年   13篇
  2003年   21篇
  2002年   14篇
  2001年   22篇
  2000年   15篇
  1999年   7篇
  1998年   12篇
  1997年   13篇
  1996年   16篇
  1995年   10篇
  1994年   6篇
  1993年   7篇
  1992年   8篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   7篇
  1985年   9篇
  1984年   7篇
  1983年   2篇
  1982年   10篇
  1981年   4篇
  1980年   9篇
  1979年   11篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   7篇
  1974年   6篇
  1973年   4篇
  1971年   2篇
  1968年   2篇
排序方式: 共有632条查询结果,搜索用时 0 毫秒
631.
High-resolution (HRTEM) and analytical electron (AEM) microscopic evidence for a polysomatic series based on regular interstratifications of serpentine (amesite) and chlorite (clinochlore) are reported from an altered skarn in Irian Jaya. The assemblage includes regular interstratifications of one clinochlore and two (2:1; three structural variants), three (3:1), and four (4:1) amesite composition 1:1 layers as well as randomly interstratified serpentine and chlorite. The order of abundance of regularly interstratified minerals is 1:1>2:1>4:1>3:1. Atomic-resolution images, image simulations, and comparison between calculated and observed diffracted intensities verify the proposed 1:1 and 2:1 structures and reveal details of their defect microstructures. AEM data show that compositions are linear combinations of the associated amesite and clinochlore. The 1:1, 2:1, 3:1, and 4:1 minerals occur both as discrete sub-micron crystals and as domains within serpentine or chlorite. Some crystals of the 2:1 phase were sufficiently large for study by X-ray precession and powder methods. Crystals of the regularly interstratified 2:1, 3:1, and 4:1 phases are usually bent. High-resolution images reveal that, within polygonal segments, the layers commonly exhibit a few degrees of curvature with segments separated by antigorite-type offsets. Deformed chlorite crystals are probably replaced by interstratified minerals during an aluminum metasomatic event. Al may have been deposited from sulfuric acid-rich solutions when they interacted with calcite and dolomite to form the anhydrite-rich corona around the phyllosilicate-rich region of the core. The interstratified chlorite (clinochlore composition) suggests aluminum addition by selective conversion of a sub-set of the chlorite layers to amesite. Defect microstructures suggest that crystals of regularly interstratified material grew by direct structural modification of preexisting chlorite. Regular interstratifications may form in response to thermally controlled limits on Al solubility in chlorite and heterogeneities in the distribution of Al-rich solutions during metasomatism. Regularly interstratified minerals coexist with randomly interstratified serpentine/chlorite, chrysotile, antigorite, lizardite, and several amesite and chlorite polytypes. Tentative chlorite and amesite identifications include one-layer (b=97°, probably IIbb), one-layer (b=90, possibly Ibb), two-, and three-layer chlorites, and 2H1 (but possibly 1M or 1T), rhombohedral (3R or 6R), and twelve-layer (Tc; non standard) serpentine polytypes. The complex phyllosilicates attest to rampant chemical and structural disequilibrium.  相似文献   
632.
This study of the Pikes Peak batholith includes the mineralogy and petrology of quartz syenite at West Creek and of fayalite-bearing and fayalite-free biotite granite near Mount Rosa; major element chemistry of the batholith; comparisons with similar postorogenic, intracratonic, sodic to potassic intrusives; and genesis of the batholith.The batholith is elongate in plan, 50 by 100 km, composite, and generally subalkalic. It was emplaced at shallow depth 1,040 m. y. ago, sharply transects its walls and may have breached its roof. Biotite granite and biotite—hornblende granite are predominant; quartz syenite, fayalite granite and riebeckite granite are present in minor amounts.Fayalite-bearing and fayalite-free quartz syenite, fayalite-biotite granite and riebeckite granite show a well-defined sodic differentiation trend; the less sodic fayalite-free granites exhibit a broader compositional range and no sharp trends.Crystallization was largely at PH2O < Ptotal; PH2O approached Ptotal only at late stages. Aplite residual to fayalite-free biotite granite in the north formed at about 1,500 bars, or 5 km depth. Feldspar assemblages indicate late stages of crystallization at about 720°C. In the south ilmenite and manganian fayalite indicate fO2 of 10?17 or 10?18 bars. Biotite and fayalite compositions and the ‘granite minimum’ imply completion of crystallization at about 700°C and 1,500 bars. Nearby fayalite-free biotite granite crystallized at higher water fugacity.All types of syenite and granite contain 5–6% K2O through a range of SiO2 of 63–76%. Average Na2O percentages in quartz syenite are 6.2, fayalite granite 4.2, and fayalite-free granite 3.3 MgO contents are low, 0.03–0.4%; FeO averages 1.9–2.5%. FeO/Fe2O3 ratios are high. Fluorine ranges from 0.3 to 0.6%.The Pikes Peak intrusives are similar in mode of emplacement, composition, and probably genesis to rapakivi intrusives of Finland, the Younger Granites of Nigeria, Cape Ann Granite and Beverly Syenite, Mass., and syenite of Kungnat, Greenland, among others — allowing for different levels of erosion. A suite that includes gabbro or basalt, anorthosite, quartz syenite, fayalite granite, riebeckite granite, and biotite and/or hornblende granites is of worldwide occurrence.A model is proposed in which mantle-derived, convecting alkali olivine basaltic magma first reacts with K2O-poor lower crust of granulite facies to produce magma of quartz syenitic composition. The syenitic liquid in turn reacts with granodioritic to granitic intermediate crust of amphibolite facies to produce the predominant fayalite-free biotite and biotite-hornblende granites of the batholith. This reaction of magma and roof involves both partial melting and the reconstitution and precipitation of refractory phases, as Bowen proposed. Intermediate liquids include MgO-depleted and Na2O-enriched gabbro, which precipitated anorthosite, and alkali diorite. The heat source is the basaltic magma; the heat required for partial melting of the roof is supplied largely by heats of crystallization of phases that settle out of the liquid — mostly olivine, clinopyroxene and plagioclase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号