全文获取类型
收费全文 | 996篇 |
免费 | 32篇 |
国内免费 | 5篇 |
专业分类
测绘学 | 25篇 |
大气科学 | 91篇 |
地球物理 | 291篇 |
地质学 | 249篇 |
海洋学 | 97篇 |
天文学 | 170篇 |
自然地理 | 110篇 |
出版年
2021年 | 9篇 |
2020年 | 11篇 |
2019年 | 10篇 |
2018年 | 14篇 |
2017年 | 13篇 |
2016年 | 23篇 |
2015年 | 17篇 |
2014年 | 20篇 |
2013年 | 43篇 |
2012年 | 23篇 |
2011年 | 45篇 |
2010年 | 43篇 |
2009年 | 55篇 |
2008年 | 37篇 |
2007年 | 36篇 |
2006年 | 49篇 |
2005年 | 43篇 |
2004年 | 49篇 |
2003年 | 42篇 |
2002年 | 30篇 |
2001年 | 35篇 |
2000年 | 27篇 |
1999年 | 19篇 |
1998年 | 24篇 |
1997年 | 19篇 |
1996年 | 12篇 |
1995年 | 17篇 |
1994年 | 19篇 |
1993年 | 13篇 |
1992年 | 22篇 |
1991年 | 9篇 |
1990年 | 16篇 |
1989年 | 12篇 |
1988年 | 11篇 |
1987年 | 17篇 |
1986年 | 13篇 |
1985年 | 17篇 |
1984年 | 10篇 |
1983年 | 16篇 |
1982年 | 15篇 |
1981年 | 13篇 |
1980年 | 11篇 |
1979年 | 7篇 |
1978年 | 9篇 |
1977年 | 10篇 |
1976年 | 3篇 |
1975年 | 6篇 |
1974年 | 3篇 |
1973年 | 6篇 |
1972年 | 4篇 |
排序方式: 共有1033条查询结果,搜索用时 15 毫秒
61.
A large street network is likely to contain duplicated or similar sounding street names. These conflicts can cause confusion in communication between people or in machine‐human interaction. Municipal authorities have begun to see the importance of uncovering these existing street name conflicts and mitigating future ones, for improved record keeping, emergency response, etc. However the commonly used Soundex phonetic algorithm is generally considered to produce poor similarity results in terms of uncovering street name conflicts. This study reports on a new fusion algorithm that combines phonetic methods and approximate string matching for street names, weighted by street type suffix (Avenue, Boulevard, Court, etc.), to quantitatively measure the collision/confusion potential presented by a pair of streets. This algorithm is then applied to the entire street network in Greater Melbourne, Australia, and the pattern of collisions at various spatial scales, and within municipalities, is mapped. The goal of this work is to produce better tools that can aid policy makers, administrators and industries dealing with location‐based services to make better decisions when assigning and disambiguating street names. 相似文献
62.
Gayantha R.L. Kodikara Tsehaie WoldaiFrank J.A. van Ruitenbeek Zack KuriaFreek van der Meer Keith D. ShepherdG.J. van Hummel 《International Journal of Applied Earth Observation and Geoinformation》2012,14(1):22-32
Pleistocene to present evaporitic lacustrine sediments in Lake Magadi, East African Rift Valley, Kenya were studied and mapped using spectral remote sensing methods. This approach incorporated surface mineral mapping using space-borne hyperspectral Hyperion imagery together with laboratory analysis, including visible, near-infrared diffuse reflectance spectroscopy (VNIR) measurements and X-ray diffraction for selected rock and soil samples of the study area. The spectral signatures of Magadiite and Kenyaite, which have not been previously reported, were established and the spectral signatures of trona, chert series, volcanic tuff and the High Magadi bed were also analyzed.Image processing techniques, MNF (Minimum Noise Fraction) and MTMF (Mixture Tuned Matched Filtering) using a stratified approach (image analysis with and without the lake area), were used to enhance the mapping of evaporates. High Magadi beds, chert series and volcanic tuff were identified from the Hyperion image with an overall mapping accuracy of 84.3%. Even though, the spatial distribution of evaporites and sediments in Lake Magadi area change in response to climate variations, the mineralogy of this area has not been mapped recently. The results of this study shows the usefulness of the hypersspectral remote sensing to map the surface geology of this kind of environment and to locate promising sites for industrial open-pit trona mining in a qualitative and quantitative manner. 相似文献
63.
Barry Hankin Trevor J. C. Page Nick A. Chappell Keith J. Beven Paul J. Smith Ann Kretzschmar Rob Lamb 《水文研究》2021,35(11):e14418
The Q-natural flood management project has co-developed with the Environment Agency 18 monitored micro-catchments (~1 km2) in Cumbria, UK installing calibrated flumes aimed at quantifying the potential shift in observed flows resulting from a range of nature-based-solutions installed by local organizations. The small-scale reduces the influence of variability characterizing larger catchments that would otherwise mask any such shifts, which we attempt to relate to a shift in model parameters. This paper demonstrates an approach to applying donor-parameter-shifts obtained from modelling two of the paired micro-catchments to a much larger scale, in order to understand the potential for improved distributed modelling of nature-based solutions in the form of additional tree-planting. The models include a rainfall-runoff model, Dynamic Topmodel, and a 2D hydrodynamic model, JFlow, permitting analysis of changes in hillslope processes and channel hydrodynamics resulting from a range of distributed measures designed to emulate natural hydrological processes that evaporate, store or infiltrate flows. We report on attempts to detect shift in hydrological response using one of the paired-micro-catchment moorland versus forestry sites in Lorton using Dynamic Topmodel. A donor-parameter-shift approach is used in a hypothetical experiment to represent new woodland in a much larger catchment, although testing all combinations of spatial planting strategies, responses to multiple-extremes, failure-modes and changes to synchronization becomes intractable to support good decision making. We argue that the problem can be re-framed to use donor-parameter-shifts at multi-local-scale catchments above communities known to be at risk, commensurate with most of the evidence of NbS impacts being effective at the small scale (ca. 10 km2). This might lead to more effective modelling to help catchment managers prioritize those communities-at-risk where there is more evidence that NbS might be effective. 相似文献
64.
Marc Rütschlin Johannes H. Cloete Iain M. Mason Keith D. Palmer 《Journal of Applied Geophysics》2007,62(4):354-360
A new measurement technique enables the complex dielectric properties of the geological strata comprising the UG1–UG2 (Upper Group 1–Upper Group 2) unit of the Bushveld Complex in South Africa to be determined with unprecedented detail at radio frequencies (RF). Results of non-destructive laboratory measurements of representative diamond drill core samples from the UG1–UG2 unit are presented at 25 MHz. These data establish that the UG1 and UG2 chromitite layers are embedded in rock strata (norite, pyroxenite and anorthosite) which are translucent in the HF spectral band, whereas the chromitite layers themselves exhibit significant velocity contrast, making them good radar reflectors. The data presented here is useful for calibration of the radar system, and for predicting the range and resolution performance of borehole radars operating in both the hanging and footwalls of the economically important platiniferous UG2 reef. 相似文献
65.
A Permeable Reactive Barrier for Treatment of Heavy Metals 总被引:8,自引:0,他引:8
66.
A rhyolitic ash-flow tuff in a hydrothermally active area within the Yellowstone caldera was drilled in 1967, and cores were studied to determine the nature and distribution of primary and secondary mineral phases. The rocks have undergone a complex history of crystallization and hydrothermal alteration since their emplacement 600,000 years ago. During cooling from magmatic temperatures, the glassy groundmass underwent either devitrification to alkali feldspar + α-cristobalite ± tridymite or granophyric crystallization to alkali feldspar + quartz. Associated with the zones of granophyric crystallization are prismatic quartz crystals in cavities similar to those termed miarolitic in plutonic rocks. Vapor-phase alkali feldspar, tridymite, magnetite, and sporadic α-cristobalite were deposited in cavities and in void spaces of pumice fragments. Subsequently, some of the vapor-phase alkali feldspar crystals were replaced by microcrystalline quartz, and the vapor-phase minerals were frosted by a coating of saccharoidal quartz.Hydrothermal minerals occur primarily as linings and fillings of cavities and fractures and as altered mafic phenocrysts. Chalcedony is the dominant mineral related to the present hydrothermal regime and occurs as microcrystalline material mixed with various amounts of hematite and goethite. The chalcedony displays intricate layering and was apparently deposited as opal from silica-rich water. Hematite and goethite also replace both mafic phenocrysts and vapor-phase magnetite. Other conspicuous hydrothermal minerals include montmorillonite, pyrite, mordenite, calcite, and fluorite. Clinoptilolite, erionite, illite, kaolinite, and manganese oxides are sporadic. The hydrothermal minerals show little correlation with temperature, but bladed calcite is restricted to a zone of boiling in the tuff and clearly was deposited when CO2 was lost during boiling.Fractures and breccias filled with chalcedony are common throughout Y-5 and may have been produced by rapid disruption of rock caused by sudden decrease of fluid pressure in fractures, most likely a result of fracturing during resurgent doming in this part of the Yellowstone caldera. The chalcedony probably was deposited as opal or β-cristobalite from a pre-existing silica floc that moved rapidly into the fractures and breccias immediately after the sudden pressure drop. 相似文献
67.
68.
Pollutant delivery through artificial subsurface drainage networks to streams is an important transport mechanism, yet the impact of drainage tiles on groundwater hydrology at the watershed scale has not been well documented. In this study, we developed a two‐dimensional, steady‐state groundwater flow model for a representative Iowa agricultural watershed to simulate the impact of tile drainage density and incision depth on groundwater travel times and proportion of baseflow contributed by tile drains. Varying tile drainage density from 0 to 0.0038 m?1, while maintaining a constant tile incision depth at 1.2 m, resulted in the mean groundwater travel time to decrease exponentially from 40 years to 19 years and increased the tile contribution to baseflow from 0% to an upper bound of 37%. In contrast, varying tile depths from 0.3 to 2.7 m, while maintaining a constant tile drainage density of 0.0038 m?1, caused mean travel times to decrease linearly from 22 to 18 years and increased the tile contribution to baseflow from 30% to 54% in a near‐linear manner. The decrease in the mean travel time was attributed to decrease in the saturated thickness of the aquifer with increasing drainage density and incision depth. Study results indicate that tile drainage affects fundamental watershed characteristics and should be taken into consideration when evaluating water and nitrate export from agricultural regions. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
69.
ABSTRACTCharacterizing, understanding and better estimating uncertainties are key concerns for drawing robust conclusions when analyzing changing socio-hydrological systems. Here we suggest developing a perceptual model of uncertainty that is complementary to the perceptual model of the socio-hydrological system and we provide an example application to flood risk change analysis. Such a perceptual model aims to make all relevant uncertainty sources – and different perceptions thereof – explicit in a structured way. It is a first step to assessing uncertainty in system outcomes that can help to prioritize research efforts and to structure dialogue and communication about uncertainty in interdisciplinary work. 相似文献
70.
Changes in monthly baseflow across the U.S. Midwest 总被引:1,自引:0,他引:1
Characterizing streamflow changes in the agricultural U.S. Midwest is critical for effective planning and management of water resources throughout the region. The objective of this study is to determine if and how baseflow has responded to land alteration and climate changes across the study area during the 50‐year study period by exploring hydrologic variations based on long‐term stream gage data. This study evaluates monthly contributions to annual baseflow along with possible trends over the 1966–2016 period for 458 U.S. Geological Survey streamflow gages within 12 different Midwestern states. It also examines the influence of climate and land use factors on the observed baseflow trends. Monthly contribution breakdowns demonstrate how the majority of baseflow is discharged into streams during the spring months (March, April, and May) and is overall more substantial throughout the spring (especially in April) and summer (June, July, and August). Baseflow has not remained constant over the study period, and the results of the trend detection from the Mann–Kendall test reveal that baseflows have increased and are the strongest from May to September. This analysis is confirmed by quantile regression, which suggests that for most of the year, the largest changes are detected in the central part of the distribution. Although increasing baseflow trends are widespread throughout the region, decreasing trends are few and limited to Kansas and Nebraska. Further analysis reveals that baseflow changes are being driven by both climate and land use change across the region. Increasing trends in baseflow are linked to increases in precipitation throughout the year and are most prominent during May and June. Changes in agricultural intensity (in terms of harvested corn and soybean acreage) are linked to increasing trends in the central and western Midwest, whereas increasing temperatures may lead to decreasing baseflow trends in spring and summer in northern Wisconsin, Kansas, and Nebraska. 相似文献