首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   9篇
  国内免费   5篇
大气科学   8篇
地球物理   29篇
地质学   58篇
海洋学   27篇
天文学   22篇
自然地理   14篇
  2021年   3篇
  2019年   3篇
  2018年   1篇
  2017年   8篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2013年   8篇
  2012年   4篇
  2011年   12篇
  2010年   10篇
  2009年   8篇
  2008年   10篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1976年   3篇
  1975年   1篇
  1972年   3篇
  1971年   2篇
排序方式: 共有158条查询结果,搜索用时 31 毫秒
71.
72.
The March 2011 meltdowns at the Fukushima nuclear power plants in Japan resulted in an increased risk of psychological distress among affected residents. We conducted original surveys of Futaba residents, a town in Fukushima where all of the residents were forced to evacuate from their homes due to radioactive contamination, obtaining 585 responses (a response rate of about 20%). Using this original data set, we investigate the role of social capital in maintaining mental health among the residents. First, we found the level of stress captured by the Kessler index (K6) to be unusually high compared both with people across Japan and with those who were displaced because of the earthquake and/or tsunami (but not the nuclear catastrophe). However, having high levels of social capital—captured by the number of neighbors from Futaba after displacement, participation in volunteer work after displacement, and participation in tea parties after displacement—plays an important role in reducing anxiety and distress among Futaba residents. Finally, we provide concrete recommendations for policy makers and NGOs to increase resilience among affected residents by strengthening social ties.  相似文献   
73.
Izu Peninsula in central Japan, the northern tip of the Izu‐Bonin arc, hosts numerous epithermal Au–Ag vein deposits of low‐sulfidation style. All have similar vein textures, mineralogy, and alteration. Geochemical data from fluid inclusions in vein quartz, the mineralogy and mineral chemistry of alteration, and stable isotope data indicate that auriferous hydrothermal activity occurred under subaerial conditions. The K–Ar ages of auriferous vein minerals are <1.5 Ma, indicating that the mineralization took place after extensive submarine volcanism for the host rocks. These observations suggest that Au–Ag mineralization was synchronous with the development of an extensional regime of the Izu block after its collision with the Honshu arc after 1.5 Ma. This collision resulted in the shifting of the Izu block far from the trench to the rear position, and the subduction of the Izu block along the Suruga trough to the west and along the Sagami trough to the east. The reararc position of the Izu block and double subduction resulted in crustal extension, upwelling of asthenospheric mantle, and tholeiitic magmatism reflected by mafic dyke swarms and subsequent monogenetic volcanic activity in the Izu peninsula. The timing of the Au mineralization in the Izu Peninsula during the beginning of lithospheric extension is similar to that of the Sado Au–Ag deposit on Sado island in the Japan Sea. Two mineralization events coincide with extensive tholeiitic mafic volcanism and injections of dyke swarms related to the back‐arc opening of the Japan Sea. The geological setting of the Au–Ag mineralization in Izu and Sado is also similar to that of the epithermal Au–Ag deposits in northern Nevada, where mineralization was contemporaneous with crustal extension and tholeiitic mafic magmatism derived from the asthenospheric mantle. This study suggests that epithermal Au mineralization at shallow crustal depths is a product of large‐scale lithospheric evolution.  相似文献   
74.
The Mino tectono-stratigraphic terrane, central Japan, underlain by Permian to Jurassic sedimentary and volcanic rocks of various origins, was formed through accretion processes associated with the Mesozoic sea-floor spreading. This conclusion has been reached mainly from the following reasoning:
1. (1) the entire boundary of this terrane is defined by tectonic belts with high-pressure metamorphic rocks and serpentinized ultramafic rocks,
2. (2) the chemistry and petrology of the Permian greenstones demonstrate their affinity with abyssal tholeiitic and alkalic basalts,
3. (3) the widespread, but chaotic, occurrence of Permian greenstones, Triassic cherts, and Jurassic siliceous shales in the younger Jurassic clastic rocks of this terrane suggests extensive post-depositional mixing of strata,
4. (4) the sedimentology of the Jurassic sandstones strongly suggests that they are turbidity-current deposits supplied from cratonic lands,
5. (5) the South-Pacific type fossil assemblage in the Mino terrane shows strong contrast with the North-Pacific type fossil assemblage of the adjacent terranes,
6. (6) the paleomagnetism of the Permian and Jurassic greenstones, the Triassic cherts, and the Jurassic siliceous shales implies long-distance northward drift in Cretaceous time of these rocks from their original low latitudinal regions.
Along with this northward migration, the Mino terrane was accreted with extensive internal deformation to northeast Asia including the present Hida terrane. Recent accumulation of paleomagnetic and paleontologic data in the Pacific peripheral regions appears to support the existence of many allochthonous terranes which migrated from the equatorial regions. The Mino terane may be regarded as one example of these Circum-Pacific allochthons.  相似文献   
75.
On formation of a bed and distribution of bed thickness, A. N. Kolmogorov presented a mathematical explanation that if repetitive alternations of material accumulation and erosion form a sequence of beds, the resultant bed-thickness distribution curve takes a shape truncated by the ordinate at zero thickness. In this truncated distribution curve, its continuation and extension from positive to negative thickness represents the distribution of beds with negative thickness, that is, the depth of erosion. When a distribution curve, including both positive and negative parts, is expressed by a function f(x),the ratio \(\int_0^\infty {f(x)dx to} \int_{ - \infty }^\infty {f(x)dx} \) ,called Kolmogorov's coefficient and designated as p,is a parameter representing the degree of accumulation in the depositional environment. On the assumption that f(x)is described by the Gaussian distribution function, the coefficient pfor Permian and Pliocene sequences in central Japan was calculated. The coefficients also were obtained from published data for different types of sediments from other areas. It was determined that they are more or less different depending on their depositional environments. The calculated results are summarized as follows: $$\begin{gathered} p = 0.80 - 1.0for{\text{ }}alluvial{\text{ }}or{\text{ }}fluvial{\text{ }}deposits \hfill \\ p = 0.65 - 0.95for{\text{ }}nearshore{\text{ }}sediments \hfill \\ p = 0.55 - 0.95for{\text{ }}geosynclinal{\text{ }}sediments \hfill \\ p = 0.90 - 1.0for{\text{ }}varves \hfill \\ \end{gathered} $$ In addition, a ratio \(q = \int_0^\infty {xf(x)dx/} \int_{ - \infty }^\infty {|x|f(x)dx} \) ,called Kolmogorov's ratio in this paper, is introduced for estimating a degree of total thickness actually observed in the field relative to total thickness once present in a basin. The calculated results of Kolmogorov's ratio are as follows: $$\begin{gathered} q = 0.88 - 1.0for{\text{ }}alluvial{\text{ }}or{\text{ }}fluvial{\text{ }}deposits \hfill \\ q = 0.68 - 0.98for{\text{ }}nearshore{\text{ }}sediments \hfill \\ q = 0.55 - 0.96for{\text{ }}geosynclinal{\text{ }}sediments \hfill \\ q = 0.92 - 1.0for{\text{ }}varves \hfill \\ \end{gathered} $$ The sedimentological significance of these values is discussed.  相似文献   
76.
The Bingham porphyry Cu-Au-Mo deposit, Utah, may only be world-class because of substantial contributions of sulfur and metals from mafic alkaline magma to an otherwise unremarkable calc-alkaline system. Volcanic mafic alkaline rocks in the district are enriched in Cr, Ni, and Ba as well as Cu, Au, platinum group elements (PGE), and S. The bulk of the volcanic section that is co-magmatic with ore-related porphyries is dacitic to trachytic in composition, but has inherited the geochemical signature of high Cr, Ni, and Ba from magma mixing with the mafic alkaline rocks. The volcanic section that most closely correlates in time with ore-related porphyries is very heterogeneous containing clasts of scoriaceous latite, latitic, and minette, and flows of melanephelinite, shoshonite, and olivine latite in addition to volumetrically dominant dacite/trachyte. Bingham ore-related porphyries show ample evidence of prior mixing with mafic alkaline magmas. Intrusive porphyries that have not been previously well-studied have several chemical and mineralogical indications of magma mixing. These "mixed" lithologies include the hybrid quartz monzonite porphyry, biotite porphyry, and minette dikes. Even some of the more silicic latite and monzonite porphyries retain high Cr and Ba contents indicative of mixing and contain trace amounts of sapphire (<1 mm). The heterogeneous block and ash flow deposits also contain sapphire and are permissively correlated with the intrusions based on chemical, mineralogical, and isotopic data. Magma mixing calculations suggest about 10% of the monzonitic/latitic ore-related magma may have been derived from mafic alkaline magma similar to the melanephelinite. If the original S content of the mafic magma was about 2,000-4,000 ppm, comparable with similar magmas, then the mafic magma may have been responsible for contributing more than half of the S and a significant portion of the Cu, Au, and PGE in the Bingham deposit.  相似文献   
77.
Takeda  Joe  Tamura  Keiko  Tatsuki  Shigeo 《Natural Hazards》2003,29(3):567-585
The main objectives of this study were (1) to examine what has beenrecovered and what has not yet been recovered in Nishinomiya City five years after the GreatHanshin-Awaji Earthquake, and (2) to find current service needs for the earthquake survivors,especially for the disadvantaged populations. Disadvantaged populations are minorities in society, andtheir needs and opinions are often ignored and not reflected in the services or mitigation policy,despite the fact that they are the ones who are affected most by various hazards. At the same time, becauseof their unique characteristics and positions in society, their needs differ from the majorityof the society. Six hundred eighty-six opinion cards were collected in nine grassroots workshopsessions with various disadvantaged groups in Nishinomiya City, such as the physically challenged,the visually impaired, the elderly living in public housing, junior and senior high school students,mothers with small children, and those who lost their own homes because of the earthquake. Theseopinion cards were sorted out and analyzed by using a TQM(Total Quality Management)-basedassessment method. Since the TQM-based assessment method allows bottom-up integration ofopinions from each individual, it helps us identify unique needs of the disadvantaged groupsand reflect their opinions in mitigation plan and policies. The main findings of this study include (1)the city redevelopment cannot be achieved without integrating the viewpoints of thedisadvantaged; (2) the social support was a key resource for both mental health and community development;and (3) disaster experiences and adaptation produced civic mindedness among people in a community.  相似文献   
78.
We report here for the first time, the occurrence of sapphirine+quartz assemblage in textural equilibrium from quartzo-feldspathic and pelitic granulites from southern India. The sapphirine-bearing rocks occur as layered gneisses associated with pink granite within massive charnockite in Rajapalaiyam area in the southern part of Madurai Block. Sapphirine occurs in three associations: (i) fine-grained subhedral mineral associated with quartz enclosed in garnet, (ii) intergrowth with Al-rich orthopyroxene (up to 9.7 wt.% Al2O3), and (iii) in symplectitic intergrowth with orthopyroxene (Al2O3= 5.9–6.7 wt.%) and cordierite surrounding garnet. The sapphirine in association with quartz is slightly magnesian (XMg = 0.79–0.80) and low in Si content (1.55–1.56 pfu) as compared with those associated with orthopyroxene and cordierite (XMg= 0.77–0.79, Si = 1.59–1.63 pfu). The sapphirine+quartz assemblage suggests that the granulites underwent T>1050 °C peak metamorphism. Cores of porphyroblastic orthopyroxene in the sapphirine-bearing rocks shows high-Al2O3 content of up to 9.7 wt.%, suggesting T = 1040–1060°C and P = 8 kbar. FMAS reaction of sapphirine+quartz→garnet+sillimanite+cordierite indicates a cooling from sapphirine+quartz stability field after the peak ultrahigh-temperature metamorphism. Slightly lower temperature estimates from ternary feldspar and sapphirine-spinel geothermometers (T = 950–1000°C) also support a post-peak isobaric cooling. Corona textures of orthopyroxene+cordierite (±sapphirine), orthopyroxene+sapphirine, and cordierite+spinel around garnet suggest subsequent decompression. The sapphirine-quartz association and related textures reported in this study have important bearing on the ultrahigh-temperature metamorphism and exhumation history of the Madurai Block as well as on the tectonic evolution of the continental deep crust in southern India.  相似文献   
79.
The daily water balance for the drainage basin of Koryto Glacier, Kamchatka Peninsula, Russia, was calculated during the period from August to September 2000. The result shows that 14×106 m3 of meltwater and 2×106 m3 of rainwater entered the basin, while 26×106 m3 of water drained from the basin through proglacial streams. Thus, about ?9×106 m3 of water storage reduction occurred in the basin. Vertical displacements of the glacier surface showed that the volume change due to contraction of subglacial cavities was nearly 20% of the total storage change. The remaining fraction of water storage during the period is thought to be stored in englacial and supraglacial locations. The estimate of water balance components in the early ablation season in 2000 indicates that meltwater was already stored within the glacier before the spring, even during the previous year, and that the stored water drained through the ablation season.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号