首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   1篇
大气科学   3篇
地球物理   16篇
地质学   9篇
海洋学   13篇
天文学   9篇
自然地理   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有51条查询结果,搜索用时 62 毫秒
41.
An analysis of the time series data sets collected from the 1960s to 1990s in the Oyashio Water revealed signs of alteration in the physical, chemical and biological properties of the water column in the western subarctic North Pacific. Wintertime salinity, phosphate concentration and apparent oxygen utilization (AOU) in the subsurface increased linearly over the 30 years. At the same time, salinity and phosphate in the surface mixed layer decreased. An increase in the density gradient in the surface and subsurface suggested that the water column stratification intensified, reducing the vertical exchange of water properties during the period. The Net Community Production (NCP), estimated from the phosphate consumption from February through August, also declined. Water column Chl a was approximately halved and diatoms decreased by one order of magnitude in spring, consistent with the multi-decadal decreasing trend of NCP. Zooplankton biomass was also nearly halved during the same period. In contrast, wintertime Chl a increased by 63% and diatom abundance doubled. Developmental timing became earlier in Neocalanus flemingeri, and spring occurrence of N. plumchrus increased after the 1980s. Reduced vertical water exchange might have limited nutrient supply to the level, decreasing winter-summer NCP for these three decades. It is speculated that, in the meantime, the earlier stabilization of the surface layer might have enhanced wintertime diatom production in the Oyashio's light-limited environment. This condition could allow zooplankton to effectively utilize diatoms from earlier timing, resulting in the apparent early developmental timing and abundance increase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
42.
43.
Fugen-dake, the main peak of Unzen Volcano, began a new eruption sequence on November 17, 1990. On May 20, 1991, a new lava dome appeared near the eastern edge of the Fugen-dake summit. Small-scale, 104–106 m3 in volume, Merapi-type block and ash flows were frequently generated from the growing lava dome during May–June, 1991. These pyroclastic flows were accompanied by co-ignimbrite ash plumes that deposited ash-fall deposits downwind of the volcano. Three examples of co-ignimbrite ash-fall deposits from Unzen pyroclastic flows are described. The volume of fall deposits was estimated to be about 30% by volume of the collapsed portions of the dome that formed pyroclastic flows. This proportion is smaller than that described for other larger co-ignimbrite ash-fall deposits from other volcanoes. Grain size distributions of the Unzen co-ignimbrite ash-fall deposits are bi-modal or tri-modal. Most ashes are finer than 4 phi and two modes were observed at around 4–7 phi and 9 phi. They are composed mainly of groundmass fragments. Fractions of another mode at around 2 phi are rich in crystals derived from dome lava. Some of the fine ash component fell as accretionary lapilli from the co-ignimbrite ash cloud indicating either moisture or electrostatic aggregation. We believe that the co-ignimbrite ash of Unzen block and ash flows were formed by the mechanical fracturing of the cooling lava blocks as they collapsed and moved down the slope. These ashes were entrained into the convective plumes generated off the tops of the moving flows.  相似文献   
44.
The stratigraphy of tsunami deposits along the Japan Sea, southwest Hokkaido, northern Japan, reveals tsunami recurrences in this particular area. Sandy tsunami deposits are preserved in small valley plains, whereas gravelly deposits of possible tsunami origin are identified in surficial soils covering a Holocene marine terrace and a slope talus. At least five horizons of tsunami events can be defined in the Okushiri Island, the youngest of which immediately overlies the Ko‐d tephra layer (1640 AD) and was likely formed by the historical Oshima‐Ohshima tsunami in 1741 AD. The four older tsunami deposits, dated using accelerator mass spectrometry 14C, were formed at around the 12th century, 1.5–1.6, 2.4–2.6, and 2.8–3.1 ka, respectively. Tsunami sand beds of the 1741 AD and circa 12th century events are recognized in the Hiyama District of Hokkaido Island, but the older tsunami deposits are missing. The deposits of these two tsunamis are found together at the same sites and distributed in regions where wave heights of the 1993 tsunami (Hokkaido Nansei‐oki earthquake, Mw = 7.7) were less than 3 m. Thus, the 12th century tsunami waves were possibly generated near the south of Okushiri Island, whereas the 1993 tsunami was generated towards the north of the island. The estimated recurrence intervals of paleotsunamis, 200–1100 years with an average of 500 years, likely represents the recurrence interval of large earthquakes which would have occurred along several active faults offshore of southwest Hokkaido.  相似文献   
45.
Microplastics in the Southern Ocean   总被引:4,自引:0,他引:4  
A field survey to collect microplastics with sizes < 5 mm was conducted in the Southern Ocean in 2016. We performed five net-tows and collected 44 pieces of plastic. Total particle counts of the entire water column, which is free of vertical mixing, were computed using the surface concentration (particle count per unit seawater volume) of microplastics, wind speed, and significant wave height during the observation period. Total particle counts at two stations near Antarctica were estimated to be in the order of 100,000 pieces km? 2.  相似文献   
46.
Examined here is a hypothetical idea of the splitting of the subtropical gyre in the western North Pacific on the basis of two independent sources of data,i.e., the long-term mean geopotential-anomaly data compiled by the Japanese Oceanographic Data Center and the synoptic hydrographic (STD) data taken by the Hakuho Maru in the source region of the Kuroshio and the Subtropical Countercurrent in the period February and March 1974. Both of the synoptic and the long-term mean dynamic-topographic maps reveal three major ridges, which indicate that the western subtropical gyre is split into three subgyres. Each subgyre is made up of the pair of currents, the Kuroshio and the Kuroshio Countercurrent, the Subtropical Countercurrent and a westward flow lying just south of the Countercurrent (18°N–21°N), and the northern part of the North Fquatorial Current and an eastward flow at around 18°N. The subgyres are more or less composed of a train of anticyclonic eddies with meridional scales of between 300 and 600 km, so that the volume transport of the subgyres varies by a factor of two or more from section to section. The upper-water characteristics also support the splitting of the subtropical gyre; the water characteristics are fairly uniform within each subgyre, but markedly different between them. The northern rim of each subgyre appears as a sharp density front accompanied by an eastward flow. The bifurcations of the sharp density fronts across the western boundary current indicate that the major part of the surface waters in the North Equatorial Countercurrent is not brought into the Kuroshio. The western boundary current appears as a continuous feature of high speed, but the waters transported change discontinuously at some places.  相似文献   
47.
To evaluate their response to oceanographic conditions, interannual variations in seasonal abundance of Eucalanus bungii were investigated in zooplankton samples collected from the Oyashio Current system from 1960 to 2002. Large decadal changes were observed in seasonal timing and population age-structure. During the early 1970s and 1990s, E. bungii were abundant until mid-summer, but during the late 1970s and early 1980s, the season of maximum abundance was limited to spring and early summer. From the late 1970s to early 1980s, spring–summer abundance of newly recruited young copepodites (C1–C2) declined significantly, and an even more pronounced decline was observed for the abundance of the late copepodite stages (C3–C5). Monthly population structure showed that young of the year stopped development at C3 during the late 1970s to early 1980s, but molted into late copepodite stages in the other decades. Seasonal weakening of the Aleutian Low Pressure System estimated from North Pacific Index (NPI) was rapid during the late 1970s to early 1980s, and the NPI was positively correlated with phosphate concentrations at sea surface, spring–summer abundance of the young copepodites stages, and the extended duration of the season of high abundance. These results suggest that the decadal decline of copepod abundance originated at the early life stages, and was associated with a shift of atmospheric and oceanographic conditions. As possible biological mechanisms, we propose reduced egg production, lower survival for the portion of the annual cohort with late birth date, and overwintering of the survivors at younger stages.  相似文献   
48.
Forward modelling of the crustal structure of the eastern Honshu Island, Japan, was made based on the group velocities ofPL-waves in the period range of 20–30 s. The observed values of group velocity were obtained by appling the multiple filter technique to the seismograms for earthquakes with the epicentral distance ranging from 500 to 1000 km. The theoretical values were calculated using Oliver and Major's method to find the best fit dispersion curve in the least-squares sense. The obtained structural model has considerably high crustal velocities compared to other previous models. It was shown that thePL-wave group velocity in the period range of interest was most sensitive to seismic velocities of the center of the crust. Numerical experiments confirmed the applicability of the approximation methods employed to obtain both observed and theoretical group velocities.  相似文献   
49.
An inverse method of modeling the regionalPL waveform with the predominant period of about 20 s was developed to estimate the averageS-velocity structure of the upper crust. Applicability of the waveform modeling was confirmed by the results of the numerical experiments: thePL waveform is most sensitive to theS velocity in the upper crust, whereas it is not affected significantly by errors involved in the focal mechanism solution and focal depth determination when thePL wave is well developed. The method was applied to the observed seismograms recorded in central Japan from the earthquakes with epicentral distances 300–500 km. As a result, distinct regional differences were found in the upper crustalS velocity; in particular, between the southern Shikoku district, west Japan, and the southern Chubu district, central Japan, and between the mountainous and the coastal areas in the southern Chubu district. These differences are in agreement with the general features ofP-velocity structures obtained by explosion experiments and by analyses of natural earthquakes. Our method is effective to the extent that the crustal structure along the propagation path can be assumed a horizontally layered structure; it is not applicable when the sensitivity of thePL waveform to the error in the focal mechanism solution is exceptionally high.  相似文献   
50.
The western subarctic gyre (WSG) and the eastern Alaska Grye (AG) on each side of the subarctic North Pacific, have many similarities. In both gyres, macronutrients are generally high and chl is low, and hence both gyres are High Nitrate, Low Chlorophyll (HNLC) regions. Despite the general similarities between these two gyres, there are many important differences. The time series station established at Stn KNOT on the southwest edge of the WSG and two in situ mesoscale iron enrichment experiments at each of the gyres has provided more information on iron concentrations, the dual role of iron and silicate limitation and seasonal cycles in the gyres. There is more seasonality in many parameters at Stn KNOT than at Stn P. There is an increase in Chl and primary productivity at Stn KNOT in May followed by increased iron limitation in summer. Low DIC:NO3 ratios and high Si:NO3 ratios in the WSG, indicate lower calcification and higher diatom production than at Stn P. The sources of iron for these areas are still not clear, but horizontal transport of iron rich coastal water and vertical transport could be important sources at certain times of the year in addition to dust input. Satellite images show that chl-rich coastal waters occasionally extend to the vicinity of Stn KNOT and therefore Stn KNOT may not always represent conditions in the main part of the WSG. This review focuses mainly on a comparison of Stn KNOT and Stn P, two time series stations on the edge of two very large gyres. At present, we have a limited understanding of the temporal and spatial variability within each of these large gyres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号