首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   11篇
  国内免费   8篇
测绘学   2篇
大气科学   8篇
地球物理   61篇
地质学   106篇
海洋学   42篇
天文学   74篇
综合类   3篇
自然地理   12篇
  2022年   2篇
  2021年   5篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   7篇
  2014年   12篇
  2013年   11篇
  2012年   6篇
  2011年   9篇
  2010年   4篇
  2009年   8篇
  2008年   10篇
  2007年   12篇
  2006年   20篇
  2005年   16篇
  2004年   20篇
  2003年   26篇
  2002年   7篇
  2001年   22篇
  2000年   15篇
  1999年   12篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1993年   4篇
  1992年   3篇
  1990年   3篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
151.
Weathering rinds formed in Mesozoic sandstone and basalt cobbles buried in terrace deposits for up to 300 ka have been investigated. The aim was to determine the formation process and elemental mass balances during rind development. The ages of terraces distributed in the western part of Fukui prefecture, central Japan have been determined as 50 ka, 120 ka and 300 ka based on a tephro-stratigraphic method. Detailed investigations across the weathering rinds, consisting of microscopic observations, porosity measurements, and mineralogical and geochemical analyses using X-ray diffractometry (XRD), X-ray fluorescence (XRF), secondary X-ray analytical microscopy (SXAM), scanning electron microanalyser (SEM) and electron probe microanalysis (EPMA) have been carried out. The results revealed that the Fe concentrations in the weathering rind of a basalt cobble slightly decreased from the cobble’s surface (rim) towards the unweathered core. In contrast, in a sandstone cobble formed under the same environmental conditions over the same period of time there is an Fe-rich layer at some distance below the cobble’s surface. Elemental mass balances across the rinds were determined by using open system mass balance (τi,j) calculations and show that the Fe was precipitated as Fe-oxyhydroxides in the basalt cobbles, although Fe was slightly removed from the rims. In sandstone cobbles, on the other hand, Fe migrated along a Fe concentration gradient by diffusion and precipitated as Fe-oxyhydroxide minerals to form the weathering rinds. Presumably, precipitation was due to the relatively higher pH conditions caused by mineral dissolution within the pores, principally involving calcite, but probably also silicates including feldspar. The detailed characterization of the weathering rinds revealed the influence of lithology on the accumulation and dissolution of Fe-oxyhydroxides, causing weathering rinds with different characteristics to develop in different kinds of buried cobbles under the same conditions. Relatively large climatic changes in the study area did not cause discernable variations in the mean formation rates of the studied rinds, which were in the order of 10?8 m/a for both basalt and sandstone cobbles. These rates are 1–2 orders of magnitude slower than those reported for tropical areas elsewhere, most probably due to the lower rainfall in the studied area.  相似文献   
152.
153.
154.
Episyenite is a quartz-depleted vuggy rock resulting from hydrothermal alteration of granitic rocks. This is the first report of its existence in an island arc, which is identified in a deep drill core of the Toki Cretaceous granite distributed in central Japan. In order to understand the petrographical features of the episyenite, neutron porosity measurement, geochemical analysis, microscopic observation, and X-ray computed tomography scanning were carried out. The results show remarkably high porosity (35.4 %) due to interconnecting vugs and the removal of quartz, plagioclase, and biotite. The Rb–Sr isotopic results and the paragenetic sequence of secondary minerals in the vugs suggest that the hydrothermal alteration process can be divided into an episyenitization stage and a later hydrothermal stage. At the episyenitization stage (70.6 ± 3.1 Ma) ca. 6 million years after the emplacement of the unaltered granite (76.3 ± 1.5 Ma), dissolution of quartz, biotite, and plagioclase occurred and was followed by the precipitation of albite, vermicular chlorite, and platy calcite. The episyenitization is considered as a local alteration of the Toki granite in an isotopically closed system. At the later hydrothermal stage, illite and secondary quartz precipitated from circulating meteoric-derived water in the dissolution vugs. Superimposing alteration at the later hydrothermal stage is limited, which results in the preservation of the episyenite in an almost primitive condition.  相似文献   
155.
The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78–85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85–92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4–5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at <~200 MPa, whereas magma evolves through a convective melt exchange between the main magma and mushy boundary layers when the magma body is located at >~200 MPa.  相似文献   
156.
157.
158.
Cyclones with strong winds can make the Southern Ocean and the Antarctic a dangerous environment.Accurate weather forecasts are essential for safe shipping in the Southern Ocean and observational and logistical operations at Antarctic research stations.This study investigated the impact of additional radiosonde observations from Research Vessel"Shirase"over the Southern Ocean and Dome Fuji Station in Antarctica on reanalysis data and forecast experiments using an ensemble data assimilation system comprising the Atmospheric General Circulation Model for the Earth Simulator and the Local Ensemble Transform Kalman Filter Experimental Ensemble Reanalysis,version 2.A 63-member ensemble forecast experiment was conducted focusing on an unusually strong Antarctic cyclonic event.Reanalysis data with(observing system experiment)and without(control)additional radiosonde data were used as initial values.The observing system experiment correctly captured the central pressure of the cyclone,which led to the reliable prediction of the strong winds and moisture transport near the coast.Conversely,the control experiment predicted lower wind speeds because it failed to forecast the central pressure of the cyclone adequately.Differences were found in cyclone predictions of operational forecast systems with and without assimilation of radiosonde observations from Dome Fuji Station.  相似文献   
159.
We have performed a large set of high-resolution cosmological simulations using smoothed particle hydrodynamics to study the formation of the first luminous objects in the Lambda cold dark matter cosmology. We follow the collapse of primordial gas clouds in eight early structures and document the scatter in the properties of the first star-forming clouds. Our first objects span formation redshifts from   z ∼ 10  to ∼50 and cover an order of magnitude in halo mass. We find that the physical properties of the central star-forming clouds are very similar in all of the simulated objects despite significant differences in formation redshift and environment. This suggests that the formation path of the first stars is largely independent of the collapse redshift; the physical properties of the clouds have little correlation with spin, mass or assembly history of the host halo. The collapse of protostellar objects at higher redshifts progresses much more rapidly due to the higher densities, which accelerates the formation of molecular hydrogen, enhances initial cooling and shortens the dynamical time-scales. The mass of the star-forming clouds cover a broad range, from a few hundred to a few thousand solar masses, and exhibit various morphologies: some have disc-like structures which are nearly rotational supported; others form flattened spheroids; still others form bars. All of them develop a single protostellar 'seed' which does not fragment into multiple objects up to the moment that the central gas becomes optically thick to H2 cooling lines. At this time, the instantaneous mass accretion rate on to the centre varies significantly from object to object, with disc-like structures having the smallest mass accretion rates. The formation epoch and properties of the star-forming clouds are sensitive to the values of cosmological parameters.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号