首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   18篇
  国内免费   6篇
测绘学   5篇
大气科学   12篇
地球物理   116篇
地质学   122篇
海洋学   76篇
天文学   50篇
自然地理   24篇
  2021年   3篇
  2020年   8篇
  2019年   7篇
  2018年   11篇
  2017年   12篇
  2016年   10篇
  2015年   12篇
  2014年   13篇
  2013年   14篇
  2012年   17篇
  2011年   14篇
  2010年   17篇
  2009年   19篇
  2008年   21篇
  2007年   21篇
  2006年   15篇
  2005年   16篇
  2004年   11篇
  2003年   14篇
  2002年   12篇
  2001年   15篇
  2000年   8篇
  1999年   7篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   3篇
  1994年   7篇
  1993年   5篇
  1992年   8篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1986年   8篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
排序方式: 共有405条查询结果,搜索用时 15 毫秒
121.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   
122.
Masaki  Takahashi Kazuo  Saito 《Island Arc》1997,6(2):168-182
Abstract Recent paleomagnetic studies are reviewed in an effort to clarify the relationship between the intra-arc deformation of central Japan and the collision tectonics of the Izu-Bonin Arc. The cusp structure of the pre-Neogene terranes of central Japan, called the Kanto Syntaxis, suggests a collisional origin with the Izu-Bonin Arc. The paleomagnetic results and newly obtained radiometric ages of the Kanto Mountains revealed the Miocene rotational history of the east wing of the Kanto Syntaxis. More than 90° clockwise rotation of the Kanto Mountains took place after deposition of the Miocene Chichibu Basin (planktonic foraminiferal zone of N.8: 16.6–15.2 Ma). After synthesizing the paleomagnetic data of the Japanese Islands and collision tectonics of central Japan, it appears that approximately a half rotation (40–50°) probably occurred at ca 15 Ma in association with the rapid rotation of Southwest Japan. The remainder (50-40°) continued until 6 Ma, resulting in the sharp bent structure of the pre-Neogene accretionary complexes (Kanto Syntaxis). The latter rotation seems to have been caused by the collision of the Izu-Bonin Arc on the northwestward migrating Philippine Sea Plate.  相似文献   
123.
This paper investigates the ionospheric and geomagnetic responses during the 28 March 2005 and 14 May 2005 Sumatran earthquakes using GPS and magnetometer stations located in the near zone of the epicenters. These events occurred during low solar and geomagnetic activity. TEC oscillations with periods of 5–10 min were observed about 10–24 min after the earthquakes and have horizontal propagation velocities of 922–1259 m/s. Ionospheric disturbances were observed at GPS stations located to the northeast of the epicenters, while no significant disturbances were seen relatively east and south of the epicenters. The magnetic field measurements show rapid fluctuations of 4–5 s shortly after the earthquake, followed by a Pc5 pulsation of 4.8 min about 11 min after the event. The correlation between the ionospheric and geomagnetic responses shows a good agreement in the period and time lag of the peak disturbance arrival, i.e. about 11–13 min after the earthquake.  相似文献   
124.
This paper presents a new type of electromagnetic damper with rotating inertial mass that has been developed to control the vibrations of structures subjected to earthquakes. The electromagnetic inertial mass damper (EIMD) consists of a ball screw that converts axial oscillation of the rod end into rotational motion of the internal flywheel and an electric generator that is turned by the rotation of the inner rod. The EIMD is able to generate a large inertial force created by the rotating flywheel and a variable damping force developed by the electric generator. Device performance tests of reduced‐scale and full‐scale EIMDs were undertaken to verify the basic characteristics of the damper and the validity of the derived theoretical formulae. Shaking table tests of a three‐story structure with EIMDs and earthquake response analyses of a building with EIMDs were conducted to demonstrate the seismic response control performance of the EIMD. The EIMD is able to reduce story drifts as well as accelerations and surpasses conventional types of dampers in reducing acceleration responses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
125.
126.
For the appropriate management and restoration of rivers, isolated vegetation is often a practical means for improving stream habitat and ecology. The effect of a finite vegetation patch on flow and bed morphology in an open channel was investigated using laboratory experiments. The patch containing emergent and submerged vegetation was modeled using circular cylinders and located mid‐channel along a side wall. Several configurations of the patch and submergence ratio (i.e. water depth to the height of vegetation), and two flow conditions (i.e. below and above the sediment motion threshold) were considered. For flows below the sediment motion threshold, erosion occurred primarily on the opposite side of the patch and near the leading edge of the patch. The degree of scouring depth observed in both these regions was affected by the submergence ratio and it increased with the non‐dimensional flow blockage (i.e. the product of the patch density and width). In contrast, for flows above the sediment motion threshold, sediment accumulated within and around the patch due to a reduction in bed shear stress, which was strongly influenced by the flow blockage and the obstruction ratio (i.e. the ratio of patch width to channel width). The eroded area observed within the patch was consistent with the interior adjustment region where the deceleration and diversion of flow occurred through the patch. As the flow blockage increased or as the obstruction ratio decreased, the deposition rate within and behind the patch decreased. Furthermore, the deposition rate increased with an increase in the ratio of flow rate through the patch to total flow rate regardless of the submergence ratio. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
127.
We describe the detailed sedimentary characteristics of a tsunami deposit associated with the 2011 Tohoku‐oki tsunami in Hasunuma, a site on the Kujukuri coastal plain, Japan. The thick tsunami deposit was limited to within 350 m from the coastline whereas the inundation area extended about 1 km from the coastline. The tsunami deposit was sampled by excavation at 29 locations along three transects and studied using peels, soft‐X imaging and grain‐size analysis. The deposit covers the pre‐existing soil and reached a maximum measured thickness of 35 cm. It consists mainly of well‐sorted medium to fine sand. On the basis of sedimentary structures and changes in grain size, we divided the tsunami deposit into several sedimentary units, which may correspond to multiple inundation flows. The numbers of units and their sedimentary features vary among the three transects, despite the similar topography. This variation implies a considerable influence of local effects such as elevation, vegetation, microtopography, and distance from footpaths, on the tsunami‐related sedimentation.  相似文献   
128.
Radon (222Rn) measurements were conducted in Shiraho Reef (Okinawa, Japan) to investigate nearshore submarine groundwater discharge (SGDnearshore) dynamics. Estimated average groundwater flux was 2-3 cm/h (maximum 7-8 cm/h). End-member radon concentration and gas transfer coefficient were identified as major factors influencing flux estimation accuracy. For the 7-km long reef, SGDnearshore was 0.39-0.58 m3/s, less than 30% of Todoroki River’s baseflow discharge. SGDnearshore was spatially and temporally variable, reflecting the strong influence of subsurface geology, tidal pumping, groundwater recharge, and hydraulic gradient. SGDnearshore elevated nearshore nitrate concentrations (0.8-2.2 mg/l) to half of Todoroki River’s baseflow -N (2-4 mg/L). This increased nearshore Chl-a from 0.5-2 μg/l compared to the typically low Chl-a (<0.1-0.4 μg/l) in the moat. Diatoms and cyanobacteria concentrations exhibited an increasing trend. However, the percentage contributions of diatoms and cyanobacteria significantly decreased and increased, respectively. SGD may significantly induce the proliferation of cyanobacteria in nearshore reef areas.  相似文献   
129.
Coral reef terraces are one of the best recorders of relative sea-level changes during the last glacial cycle. Thus far, knowledge of relative sea-level record based on coral reefs during the marine Oxygen Isotope Stage (OIS) 3 has been limited to studies of the Huon Peninsula, Papua New Guinea. High-precision a α-spectrometric 230Th/234U dating demonstrated an offlapping sequence of five coral reef complexes, ages of which are 66, 64, 62, 55 and 52 ka, in the northern part of Kikai Island, central Ryukyus of Japan. Interstadial reefs, characterized by deepening-upward sequences of coral assemblages, recorded three hemicycles from transgression to highstand at 52, 62, and 66 ka, during which these reefs were drowned. These highstands in the relative sea-level record can be correlated with the eustatic record reconstructed from the Huon reef terraces and with the interstadials 14, 18, and 19 of the GISP 2 oxygen isotope record. This consistency confirms the Huon sea-level record of OIS 3 and implies that the eustatic sea level responded to the millennial-scale climate changes even during the glacial period of OIS 4.  相似文献   
130.
The Serrinha gold deposit of the Gurupi Belt, northern Brazil, belongs to the class of orogenic gold deposits. The deposit is hosted in highly strained graphitic schist belonging to a Paleoproterozoic (∼2,160 Ma) metavolcano-sedimentary sequence. The ore-zones are up to 11 m thick, parallel to the regional NW–SE schistosity, and characterized by quartz-carbonate-sulfide veinlets and minor disseminations. Textural and structural data indicate that mineralization was syn- to late-tectonic and postmetamorphic. Fluid inclusion studies identified early CO2 (CH4-N2) and CO2 (CH4-N2)-H2O-NaCl inclusions that show highly variable phase ratios, CO2 homogenization, and total homogenization temperatures both to liquid and vapor, interpreted as the product of fluid immiscibility under fluctuating pressure conditions, more or less associated with postentrapment modifications. The ore-bearing fluid typically has 18–33mol% of CO2, up to 4mol% of N2, and less than 2mol% of CH4 and displays moderate to high densities with salinity around 4.5wt% NaCl equiv. Mineralization occurred around 310 to 335°C and 1.3 to 3.0 kbar, based on fluid inclusion homogenization temperatures and oxygen isotope thermometry with estimated oxygen fugacity indicating relatively reduced conditions. Stable isotope data on quartz, carbonate, and fluid inclusions suggest that veins formed from fluids with δ18OH2O and δDH2O (310–335°C) values of +6.2 to +8.4‰ and −19 to −80‰, respectively, which might be metamorphic and/or magmatic and/or mantle-derived. The carbon isotope composition (δ13C) varies from −14.2 to −15.7‰ in carbonates; it is −17.6‰ in fluid inclusion CO2 and −23.6‰ in graphite from the host rock. The δ34S values of pyrite are −2.6 to −7.9‰. The strongly to moderately negative carbon isotope composition of the carbonates and inclusion fluid CO2 reflects variable contribution of organic carbon to an originally heavier fluid (magmatic, metamorphic, or mantle-derived) at the site of deposition and sulfur isotopes indicate some oxidation of the originally reduced fluid. The deposition of gold is interpreted to have occurred mainly in response to phase separation and fluid-rock interactions such as CO2 removal and desulfidation reactions that provoked variations in the fluid pH and redox conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号