首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   18篇
  国内免费   6篇
测绘学   5篇
大气科学   12篇
地球物理   116篇
地质学   122篇
海洋学   76篇
天文学   50篇
自然地理   24篇
  2021年   3篇
  2020年   8篇
  2019年   7篇
  2018年   11篇
  2017年   12篇
  2016年   10篇
  2015年   12篇
  2014年   13篇
  2013年   14篇
  2012年   17篇
  2011年   14篇
  2010年   17篇
  2009年   19篇
  2008年   21篇
  2007年   21篇
  2006年   15篇
  2005年   16篇
  2004年   11篇
  2003年   14篇
  2002年   12篇
  2001年   15篇
  2000年   8篇
  1999年   7篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   3篇
  1994年   7篇
  1993年   5篇
  1992年   8篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1986年   8篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
排序方式: 共有405条查询结果,搜索用时 0 毫秒
111.
112.
Explosion seismic experiments, gravity measurements and aeromagnetic surveys were made in the northern Mizuho Plateau including the Ongul Islands, East Antarctica, from 1979 to 1982 by the Japanese Antarctic Research Expeditions. The objective of these field operations was to determine the crustal structure along the 300 km-long oversnow traverse route between Syowa and Mizuho Stations. Three big shots were fired; at sea near Syowa Station, in an ice hole near Mizuho Station and in an ice hole between both stations. Twenty-seven temporal seismic stations were set up along the route. Gravity measurements were carried out at 30 points along this route. Aeromagnetic surveys over the area were made four times.In the seismic experiments, clear refracted waves from the Conrad (estimated depth 30 km) and the Moho (estimated depth 40 km) discontinuities were recorded. No layer with a velocity of less than 6 km/s was found in the Ongul Islands nor beneath the ice sheet in the surveyed area. The P-wave velocity in the upper layer varies with depth from 6.0 km/s on the surface to 6.4 km/s at a depth of 13 km. Comparing the observed record section with synthetic seismograms, it was derived that the Conrad was not associated with a sharp velocity discontinuity, but a linear velocity increase of 0.55 km/s in a transition zone of 2.4 km thick. Velocities of P* and Pn were determined as 6.95 km/s and 7.93 km/s assuming a flat layered structure.Bouguer gravity anomalies could not be calculated along the whole profile because of a lack of data on bedrock topography, so reduced gravity anomalies were calculated. These anomalies indicate no abrupt changes of the bedrock topography.  相似文献   
113.
A ray tracing computer program for non-ducted whistler mode waves in a warm plasma in the magnetosphere is developed, where electron temperature effects are taken into account. The refractive index is calculated from the warm-plasma approximation and is used in the ray tracing after its accuracy has been checked by comparison with the hot-plasma solution without approximation. The ray paths do not depend appreciably on electron temperature. However, there are regions where the waves are heavily damped by Landau damping. By paying attention to this damping region, the electron temperature can be estimated from a satellite observation of the Doppler shift and damping of a ground-based VLF signal.  相似文献   
114.
The remote sensing of Case 2 water has been far less successful than that of Case 1 water, due mainly to the complex interactions among optically active substances (e.g., phytoplankton, suspended sediments, colored dissolved organic matter, and water) in the former. To address this problem, we developed a spectral decomposition algorithm (SDA), based on a spectral linear mixture modeling approach. Through a tank experiment, we found that the SDA-based models were superior to conventional empirical models (e.g. using single band, band ratio, or arithmetic calculation of band) for accurate estimates of water quality parameters. In this paper, we develop a method for applying the SDA to Landsat-5 TM data on Lake Kasumigaura, a eutrophic lake in Japan characterized by high concentrations of suspended sediment, for mapping chlorophyll-a (Chl-a) and non-phytoplankton suspended sediment (NPSS) distributions. The results show that the SDA-based estimation model can be obtained by a tank experiment. Moreover, by combining this estimation model with satellite-SRSs (standard reflectance spectra: i.e., spectral end-members) derived from bio-optical modeling, we can directly apply the model to a satellite image. The same SDA-based estimation model for Chl-a concentration was applied to two Landsat-5 TM images, one acquired in April 1994 and the other in February 2006. The average Chl-a estimation error between the two was 9.9%, a result that indicates the potential robustness of the SDA-based estimation model. The average estimation error of NPSS concentration from the 2006 Landsat-5 TM image was 15.9%. The key point for successfully applying the SDA-based estimation model to satellite data is the method used to obtain a suitable satellite-SRS for each end-member.  相似文献   
115.
Sediment trap arrays were deployed at two deep ocean stations, one in the Bering Sea and the other in the Gulf of Alaska, in the summer of 1975. The sediment trap was constructed of a pair of polyethylene cylinders (0.185 m2 opening) with funnel-shaped bases. The trap is equipped with a lid which is closed before recovery by a tripping messenger system triggered by an electric time release. 37–68% of the total organic carbon fluxes (37–38% in the Bering Sea; 48–68% in the Gulf of Alaska) were represented by large particles (67µm<) such as fecal matter and fecal pellets which contributed minor fractions to the total particulate organic matter concentration in sea water. The total fluxes were 11.1 and 14.2 mg C m–2d–1 at 1,510 and 2,610 m respectively at the station (3,800 m) in the Bering Sea, and were 7.60, 4.66 and 3.27 mg C m–2d–1 at 900, 1,500 and 1,875 m respectively at the station (4,150 m) in the Gulf of Alaska. The former values are several times greater than the latter, suggesting that there is a regional variation in the vertical carbon flux in deep layers. The fluxes were approximately equivalent to 1 to 3% of primary productivity in the overlying surface layers. These observations suggest that deep-water ecosystems may be influenced by relatively rapid sinking of large particles such as fecal matter and fecal pellets from near surface production.  相似文献   
116.
117.
118.
119.
Radon (222Rn) measurements were conducted in Shiraho Reef (Okinawa, Japan) to investigate nearshore submarine groundwater discharge (SGDnearshore) dynamics. Estimated average groundwater flux was 2-3 cm/h (maximum 7-8 cm/h). End-member radon concentration and gas transfer coefficient were identified as major factors influencing flux estimation accuracy. For the 7-km long reef, SGDnearshore was 0.39-0.58 m3/s, less than 30% of Todoroki River’s baseflow discharge. SGDnearshore was spatially and temporally variable, reflecting the strong influence of subsurface geology, tidal pumping, groundwater recharge, and hydraulic gradient. SGDnearshore elevated nearshore nitrate concentrations (0.8-2.2 mg/l) to half of Todoroki River’s baseflow -N (2-4 mg/L). This increased nearshore Chl-a from 0.5-2 μg/l compared to the typically low Chl-a (<0.1-0.4 μg/l) in the moat. Diatoms and cyanobacteria concentrations exhibited an increasing trend. However, the percentage contributions of diatoms and cyanobacteria significantly decreased and increased, respectively. SGD may significantly induce the proliferation of cyanobacteria in nearshore reef areas.  相似文献   
120.
Vegetation and soil properties and their associated changes through time and space affect the various stages of soil erosion. The island of Ishigaki in Okinawa Prefecture, Japan is of particular concern because of the propensity of the red‐soil‐dominated watersheds in the area to contribute substantial sediment discharge to adjacent coastal areas. This paper discusses the application of remote sensing techniques in the retrieval of vegetation and soil parameters necessary for the distributed soil‐loss modelling in small agricultural catchments and analyses the variation in erosional patterns and sediment distribution during rainfall events using numerical solutions of overland flow simulations and sediment continuity equations. To account for the spatial as well as temporal variability of selected parameters of the soil‐loss equations, a method is proposed to account for the variability of associated vegetation cover based on their spectral characteristics as captured by remotely sensed data. To allow for complete spatial integration, modelling the movement of sediment is accomplished under a loose‐coupled GIS computational framework. This study lends a theoretical support and empirical evidence to the role of vegetation as a potential agent for soil erosion control. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号