首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   18篇
  国内免费   6篇
测绘学   5篇
大气科学   12篇
地球物理   116篇
地质学   122篇
海洋学   76篇
天文学   50篇
自然地理   24篇
  2021年   3篇
  2020年   8篇
  2019年   7篇
  2018年   11篇
  2017年   12篇
  2016年   10篇
  2015年   12篇
  2014年   13篇
  2013年   14篇
  2012年   17篇
  2011年   14篇
  2010年   17篇
  2009年   19篇
  2008年   21篇
  2007年   21篇
  2006年   15篇
  2005年   16篇
  2004年   11篇
  2003年   14篇
  2002年   12篇
  2001年   15篇
  2000年   8篇
  1999年   7篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   3篇
  1994年   7篇
  1993年   5篇
  1992年   8篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1986年   8篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
排序方式: 共有405条查询结果,搜索用时 93 毫秒
101.
102.
103.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   
104.
Kazuo  Salto Koichi  Kato Shunji  Sugi 《Island Arc》1997,6(2):158-167
Abstract K-Ar age studies in the Ashigawa and the southern part of the Tokuwa granodioritic bodies, which consist of the southern part of the Kofu plutonic complex, revealed that they formed between 12 and 9 Ma. Quite a narrow range of ages obtained from the Ashigawa southernmost part of the Tokuwa pluton implies that they cooled rapidly. The southern part of the Tokuwa pluton, as a whole, shows a systematic age distribution with a decrease in age to the north. Compilation of currently available plutonic ages in the South Fossa Magna suggests that the plutonic activities occurred three times in this region. Episodic activity like this could be argued in relation to the tectonic development of this region.  相似文献   
105.
Masaki  Takahashi Kazuo  Saito 《Island Arc》1997,6(2):168-182
Abstract Recent paleomagnetic studies are reviewed in an effort to clarify the relationship between the intra-arc deformation of central Japan and the collision tectonics of the Izu-Bonin Arc. The cusp structure of the pre-Neogene terranes of central Japan, called the Kanto Syntaxis, suggests a collisional origin with the Izu-Bonin Arc. The paleomagnetic results and newly obtained radiometric ages of the Kanto Mountains revealed the Miocene rotational history of the east wing of the Kanto Syntaxis. More than 90° clockwise rotation of the Kanto Mountains took place after deposition of the Miocene Chichibu Basin (planktonic foraminiferal zone of N.8: 16.6–15.2 Ma). After synthesizing the paleomagnetic data of the Japanese Islands and collision tectonics of central Japan, it appears that approximately a half rotation (40–50°) probably occurred at ca 15 Ma in association with the rapid rotation of Southwest Japan. The remainder (50-40°) continued until 6 Ma, resulting in the sharp bent structure of the pre-Neogene accretionary complexes (Kanto Syntaxis). The latter rotation seems to have been caused by the collision of the Izu-Bonin Arc on the northwestward migrating Philippine Sea Plate.  相似文献   
106.
Physics and Chemistry of Minerals - The X-ray emission spectra were measured for tetrahedrally coordinated Zn ion in several synthetic compounds. Intensity ratios of L β and L α spectral...  相似文献   
107.
108.
Recent structural, tephrochronologic and magnetostratigraphic studies conducted along the northernmost border of the Philippine Sea (PHS) plate enable us to reconstruct the precise tectonic evolution along the convergent boundary between the PHS plate and the Northeast Japan (NEJ) plate or the North American (NAM) plate since about 1 Ma. The authors of the present study split the tectonic evolution into five stages and present the characteristics of each stage. A plate tectonic interpretation is proposed, based upon the tectonic evolution, with special reference to the mode of convergent motion. In brief, our interpretations are as follows: the relative motion between the PHS and the NEJ plates was not recognized geologically within the area studied from about 1.0 to 0.9 Ma (Stage 1), suggesting either none or small influence from the coupling between the two plates during that period of time. Convergence between the PHS and the NEJ plates was possibly in N-S direction from 0.9 to 0.5 Ma (Stage II), and probably north-northwestward since 0.5 Ma (Stages III to V). The mode of the convergent motion was that of buoyant subduction in Stages II and III. The mode changed gradually from buoyant subduction during Stage IV to collision in Stage V (0.07 Ma to the present).  相似文献   
109.
Explosion seismic experiments, gravity measurements and aeromagnetic surveys were made in the northern Mizuho Plateau including the Ongul Islands, East Antarctica, from 1979 to 1982 by the Japanese Antarctic Research Expeditions. The objective of these field operations was to determine the crustal structure along the 300 km-long oversnow traverse route between Syowa and Mizuho Stations. Three big shots were fired; at sea near Syowa Station, in an ice hole near Mizuho Station and in an ice hole between both stations. Twenty-seven temporal seismic stations were set up along the route. Gravity measurements were carried out at 30 points along this route. Aeromagnetic surveys over the area were made four times.In the seismic experiments, clear refracted waves from the Conrad (estimated depth 30 km) and the Moho (estimated depth 40 km) discontinuities were recorded. No layer with a velocity of less than 6 km/s was found in the Ongul Islands nor beneath the ice sheet in the surveyed area. The P-wave velocity in the upper layer varies with depth from 6.0 km/s on the surface to 6.4 km/s at a depth of 13 km. Comparing the observed record section with synthetic seismograms, it was derived that the Conrad was not associated with a sharp velocity discontinuity, but a linear velocity increase of 0.55 km/s in a transition zone of 2.4 km thick. Velocities of P* and Pn were determined as 6.95 km/s and 7.93 km/s assuming a flat layered structure.Bouguer gravity anomalies could not be calculated along the whole profile because of a lack of data on bedrock topography, so reduced gravity anomalies were calculated. These anomalies indicate no abrupt changes of the bedrock topography.  相似文献   
110.
A ray tracing computer program for non-ducted whistler mode waves in a warm plasma in the magnetosphere is developed, where electron temperature effects are taken into account. The refractive index is calculated from the warm-plasma approximation and is used in the ray tracing after its accuracy has been checked by comparison with the hot-plasma solution without approximation. The ray paths do not depend appreciably on electron temperature. However, there are regions where the waves are heavily damped by Landau damping. By paying attention to this damping region, the electron temperature can be estimated from a satellite observation of the Doppler shift and damping of a ground-based VLF signal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号