全文获取类型
收费全文 | 279篇 |
免费 | 5篇 |
国内免费 | 4篇 |
专业分类
测绘学 | 3篇 |
大气科学 | 12篇 |
地球物理 | 80篇 |
地质学 | 106篇 |
海洋学 | 29篇 |
天文学 | 21篇 |
自然地理 | 37篇 |
出版年
2021年 | 2篇 |
2020年 | 4篇 |
2019年 | 7篇 |
2018年 | 3篇 |
2017年 | 4篇 |
2016年 | 8篇 |
2015年 | 5篇 |
2014年 | 7篇 |
2013年 | 9篇 |
2012年 | 7篇 |
2011年 | 14篇 |
2010年 | 14篇 |
2009年 | 13篇 |
2008年 | 15篇 |
2007年 | 11篇 |
2006年 | 11篇 |
2005年 | 9篇 |
2004年 | 15篇 |
2003年 | 9篇 |
2002年 | 11篇 |
2001年 | 12篇 |
2000年 | 6篇 |
1999年 | 4篇 |
1998年 | 10篇 |
1997年 | 6篇 |
1996年 | 2篇 |
1994年 | 4篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1989年 | 4篇 |
1988年 | 2篇 |
1987年 | 4篇 |
1986年 | 6篇 |
1985年 | 4篇 |
1984年 | 2篇 |
1983年 | 4篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 4篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1974年 | 4篇 |
1973年 | 1篇 |
1968年 | 1篇 |
1965年 | 1篇 |
1961年 | 1篇 |
排序方式: 共有288条查询结果,搜索用时 0 毫秒
61.
Fractal structure of spatial distribution of microfracturing in rock 总被引:10,自引:0,他引:10
62.
63.
Strong γ-ray emission from cocoons of young radio galaxies is predicted for the first time. Considering the process of adiabatic injection of the shock dissipation energy and mass of the relativistic jet in active nuclei into the cocoon, while assuming thermalizing electron plasma interactions, we find that the thermal electron temperature of the cocoon is typically predicted to be of the order of ∼ MeV, and is determined only by the bulk Lorentz factor of the relativistic jet. Together with the time-dependent dynamics of the cocoon expansion, we find that young cocoons can yield thermal bremsstrahlung emissions at energies ∼MeV. 相似文献
64.
Taro Nakai Yongwon Kim Robert C. Busey Rikie Suzuki Shin Nagai Hideki Kobayashi Hotaek Park Konosuke Sugiura Akihiko Ito 《Polar Science》2013,7(2):136-148
Here, the year 2011 characteristics of evapotranspiration and the energy budget of a black spruce forest underlain by permafrost in interior Alaska were explored. Energy balance was nearly closed during summer, and the mean value of the daily energy balance ratio (the ratio of turbulent energy fluxes to available energy) from June to August was 1.00, though a large energy balance deficit was observed in the spring. Such a deficit was explained partly by the energy consumed by snowmelt. Ground heat flux played an important role in the energy balance, explaining 26.5% of net radiation during summer. The mean daily evapotranspiration of this forest during summer was 1.37 mm day?1 – considered typical for boreal forests. The annual evapotranspiration and sublimation yielded 207.3 mm year?1, a value much smaller than the annual precipitation. Sublimation accounted for 8.8% (18.2 mm year?1) of the annual evapotranspiration and sublimation; thus, the sublimation is not negligible in the annual water balance in boreal forests. The daytime average decoupling coefficient was very small, and the mean value was 0.05 during summer. Thus, evapotranspiration from this forest was mostly explained by the component from the dryness of the air, resulting from the aerodynamically rough surface of this forest. 相似文献
65.
66.
Marvin Lüpke Michael Leuchner Delphis Levia Kazuki Nanko Shin'ichi Iida Annette Menzel 《水文研究》2019,33(26):3391-3406
Forest canopies present irregular surfaces that alter both the quantity and spatiotemporal variability of precipitation inputs. The drop size distribution (DSD) of rainfall varies with rainfall event characteristics and is altered substantially by the forest stand properties. Yet, the influence of two major European tree species, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst), on throughfall DSD is largely unknown. In order to assess the impact of these two species with differing canopy structures on throughfall DSD, two optical disdrometers, one above and one below the canopy of each European beech and Norway spruce, measured DSD of both incident rainfall and throughfall over 2 months at a 10‐s resolution. Fractions of different throughfall categories were analysed for single‐precipitation events of different intensities. While penetrating the canopies, clear shifts in drop size and temporal distributions of incoming rainfall were observed. Beech and spruce, however, had different DSD, behaved differently in their effect on diameter volume percentiles as well as width of drop spectrum. The maximum drop sizes under beech were higher than under spruce. The mean ± standard deviation of the median volume drops size (D50) over all rain events was 2.7 ± 0.28 mm for beech and 0.80 ± 0.04 mm for spruce, respectively. In general, there was a high‐DSD variability within events indicating varying amounts of the different throughfall fractions. These findings help to better understand the effects of different tree species on rainfall partitioning processes and small‐scale variations in subcanopy rainfall inputs, thereby demonstrating the need for further research in high‐resolution spatial and temporal properties of rainfall and throughfall. 相似文献
67.
Yoshihiro Iijima Tsuneo Kawaragi Takehiko Ito Kanat Akshalov Atsushi Tsunekawa Masato Shinoda 《水文研究》2008,22(16):2974-2981
In drylands, water deficit is the primary factor limiting plant growth. In the present study, surface energy balance and plant growth (above‐ground and below‐ground biomass) were measured continuously during the 2002 growing season in semiarid grassland in the northern part of Kazakhstan, Central Asia. Although there was above normal total rainfall during the 2002 growing season (May–November; 244 mm over 183 days), there was a dry period during July and August. Evaporative water was effectively supplied by precipitation and surface soil moisture during the wet season (May and June), during which time above‐ground biomass increased. During the early stages of the dry period, mature plants were likely to tap deeper sources of soil moisture, representing stored snowmelt water. As the soil moisture content decreased during the summer dry period due to the high levels of evapotranspiration and lack of precipitation, the evaporative fraction and above‐ground biomass rapidly decreased, whereas the below‐ground biomass increased. These results suggest that in summer, soil moisture acts to store water, and that soil moisture is essential for plant growth as a direct source of water during the dry period in natural grasslands in the Kazakhstan steppe. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
68.
Explosion seismic experiments, gravity measurements and aeromagnetic surveys were made in the northern Mizuho Plateau including the Ongul Islands, East Antarctica, from 1979 to 1982 by the Japanese Antarctic Research Expeditions. The objective of these field operations was to determine the crustal structure along the 300 km-long oversnow traverse route between Syowa and Mizuho Stations. Three big shots were fired; at sea near Syowa Station, in an ice hole near Mizuho Station and in an ice hole between both stations. Twenty-seven temporal seismic stations were set up along the route. Gravity measurements were carried out at 30 points along this route. Aeromagnetic surveys over the area were made four times.In the seismic experiments, clear refracted waves from the Conrad (estimated depth 30 km) and the Moho (estimated depth 40 km) discontinuities were recorded. No layer with a velocity of less than 6 km/s was found in the Ongul Islands nor beneath the ice sheet in the surveyed area. The P-wave velocity in the upper layer varies with depth from 6.0 km/s on the surface to 6.4 km/s at a depth of 13 km. Comparing the observed record section with synthetic seismograms, it was derived that the Conrad was not associated with a sharp velocity discontinuity, but a linear velocity increase of 0.55 km/s in a transition zone of 2.4 km thick. Velocities of P* and Pn were determined as 6.95 km/s and 7.93 km/s assuming a flat layered structure.Bouguer gravity anomalies could not be calculated along the whole profile because of a lack of data on bedrock topography, so reduced gravity anomalies were calculated. These anomalies indicate no abrupt changes of the bedrock topography. 相似文献
69.
Structural changes of synthetic opal by heat treatment 总被引:1,自引:0,他引:1
Akane Arasuna Masayuki Okuno Hiroki Okudera Tomoyuki Mizukami Shoji Arai Shin’ichi Katayama Mikio Koyano Nobuaki Ito 《Physics and Chemistry of Minerals》2013,40(9):747-755
The structural changes of synthetic opal by heat treatment up to 1,400 °C were investigated using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared and Raman spectroscopies. The results indicate that the dehydration and condensation of silanol in opal are very important factors in the structural evolution of heat-treated synthetic opal. Synthetic opal releases water molecules and silanols by heat treatment up to 400 °C, where the dehydration of silanol may lead to the condensation of a new Si–O–Si network comprising a four-membered ring structure of SiO4 tetrahedra, even at 400 °C. Above 600 °C, water molecules are lost and the opal surface and internal silanol molecules are completely dehydrated by heat effect, and the medium-temperature range structure of opal may begin to thermally reconstruct to six-membered rings of SiO4 tetrahedra. Above 1,000 °C, the opal structure almost approaches that of silica glass with an average structure of six-membered rings. Above 1,200 °C, the opal changes to low-cristobalite; however, minor evidence of low-tridymite stacking was evident after heat treatment at 1,400 °C. 相似文献
70.
Geologic Core Holder with a CFR PEEK Body for the X-ray CT-Based Numerical Analysis of Fracture Flow Under Confining Pressure 总被引:1,自引:0,他引:1